Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGAntiLambdaInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39
40 // Choose the target particle
41
42 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
43
44 if( verboseLevel > 1 )
45 {
46 const G4Material *targetMaterial = aTrack.GetMaterial();
47 G4cout << "G4RPGAntiLambdaInelastic::ApplyYourself called" << G4endl;
48 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
49 G4cout << "target material = " << targetMaterial->GetName() << ", ";
50 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
51 << G4endl;
52 }
53
54 // Fermi motion and evaporation
55 // As of Geant3, the Fermi energy calculation had not been Done
56
57 G4double ek = originalIncident->GetKineticEnergy()/MeV;
58 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
59 G4ReactionProduct modifiedOriginal;
60 modifiedOriginal = *originalIncident;
61
62 G4double tkin = targetNucleus.Cinema( ek );
63 ek += tkin;
64 modifiedOriginal.SetKineticEnergy( ek*MeV );
65 G4double et = ek + amas;
66 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
67 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
68 if( pp > 0.0 )
69 {
70 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
71 modifiedOriginal.SetMomentum( momentum * (p/pp) );
72 }
73 //
74 // calculate black track energies
75 //
76 tkin = targetNucleus.EvaporationEffects( ek );
77 ek -= tkin;
78 modifiedOriginal.SetKineticEnergy( ek*MeV );
79 et = ek + amas;
80 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
81 pp = modifiedOriginal.GetMomentum().mag()/MeV;
82 if( pp > 0.0 )
83 {
84 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
85 modifiedOriginal.SetMomentum( momentum * (p/pp) );
86 }
87
88 G4ReactionProduct currentParticle = modifiedOriginal;
89 G4ReactionProduct targetParticle;
90 targetParticle = *originalTarget;
91 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
92 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
93 G4bool incidentHasChanged = false;
94 G4bool targetHasChanged = false;
95 G4bool quasiElastic = false;
96 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
97 G4int vecLen = 0;
98 vec.Initialize( 0 );
99
100 const G4double cutOff = 0.1;
101 const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
102 if( (originalIncident->GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
103 Cascade( vec, vecLen,
104 originalIncident, currentParticle, targetParticle,
105 incidentHasChanged, targetHasChanged, quasiElastic );
106
107 CalculateMomenta( vec, vecLen,
108 originalIncident, originalTarget, modifiedOriginal,
109 targetNucleus, currentParticle, targetParticle,
110 incidentHasChanged, targetHasChanged, quasiElastic );
111
112 SetUpChange( vec, vecLen,
113 currentParticle, targetParticle,
114 incidentHasChanged );
115
116 delete originalTarget;
117 return &theParticleChange;
118}
119
120
121void G4RPGAntiLambdaInelastic::Cascade(
123 G4int &vecLen,
124 const G4HadProjectile *originalIncident,
125 G4ReactionProduct &currentParticle,
126 G4ReactionProduct &targetParticle,
127 G4bool &incidentHasChanged,
128 G4bool &targetHasChanged,
129 G4bool &quasiElastic )
130{
131 // Derived from H. Fesefeldt's original FORTRAN code CASAL0
132 // AntiLambda undergoes interaction with nucleon within a nucleus. Check if it is
133 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
134 // occurs and input particle is degraded in energy. No other particles are produced.
135 // If reaction is possible, find the correct number of pions/protons/neutrons
136 // produced using an interpolation to multiplicity data. Replace some pions or
137 // protons/neutrons by kaons or strange baryons according to the average
138 // multiplicity per Inelastic reaction.
139
140 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
141 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
142 const G4double targetMass = targetParticle.GetMass()/MeV;
143 const G4double pOriginal = originalIncident->GetTotalMomentum()/GeV;
144 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
145 targetMass*targetMass +
146 2.0*targetMass*etOriginal );
147 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
148
149 static G4ThreadLocal G4bool first = true;
150 const G4int numMul = 1200;
151 const G4int numMulA = 400;
152 const G4int numSec = 60;
153 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
154 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
155 static G4ThreadLocal G4double protmulA[numMulA], protnormA[numSec]; // proton constants
156 static G4ThreadLocal G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
157 // np = number of pi+, nneg = number of pi-, nz = number of pi0
158 G4int nt=0, np=0, nneg=0, nz=0;
159 G4double test;
160 const G4double c = 1.25;
161 const G4double b[] = { 0.7, 0.7 };
162 if( first ) // compute normalization constants, this will only be Done once
163 {
164 first = false;
165 G4int i;
166 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
167 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
168 G4int counter = -1;
169 for( np=0; np<(numSec/3); ++np )
170 {
171 for( nneg=std::max(0,np-2); nneg<=(np+1); ++nneg )
172 {
173 for( nz=0; nz<numSec/3; ++nz )
174 {
175 if( ++counter < numMul )
176 {
177 nt = np+nneg+nz;
178 if( nt>0 && nt<=numSec )
179 {
180 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
181 protnorm[nt-1] += protmul[counter];
182 }
183 }
184 }
185 }
186 }
187 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
188 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
189 counter = -1;
190 for( np=0; np<numSec/3; ++np )
191 {
192 for( nneg=std::max(0,np-1); nneg<=(np+2); ++nneg )
193 {
194 for( nz=0; nz<numSec/3; ++nz )
195 {
196 if( ++counter < numMul )
197 {
198 nt = np+nneg+nz;
199 if( nt>0 && nt<=numSec )
200 {
201 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
202 neutnorm[nt-1] += neutmul[counter];
203 }
204 }
205 }
206 }
207 }
208 for( i=0; i<numSec; ++i )
209 {
210 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
211 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
212 }
213 //
214 // do the same for annihilation channels
215 //
216 for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
217 for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
218 counter = -1;
219 for( np=1; np<(numSec/3); ++np )
220 {
221 nneg = np-1;
222 for( nz=0; nz<numSec/3; ++nz )
223 {
224 if( ++counter < numMulA )
225 {
226 nt = np+nneg+nz;
227 if( nt>1 && nt<=numSec )
228 {
229 protmulA[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
230 protnormA[nt-1] += protmulA[counter];
231 }
232 }
233 }
234 }
235 for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
236 for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
237 counter = -1;
238 for( np=0; np<numSec/3; ++np )
239 {
240 nneg = np;
241 for( nz=0; nz<numSec/3; ++nz )
242 {
243 if( ++counter < numMulA )
244 {
245 nt = np+nneg+nz;
246 if( nt>1 && nt<=numSec )
247 {
248 neutmulA[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
249 neutnormA[nt-1] += neutmulA[counter];
250 }
251 }
252 }
253 }
254 for( i=0; i<numSec; ++i )
255 {
256 if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
257 if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
258 }
259 } // end of initialization
260 const G4double expxu = 82.; // upper bound for arg. of exp
261 const G4double expxl = -expxu; // lower bound for arg. of exp
262
274 const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
275 0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
276 0.39,0.36,0.33,0.10,0.01};
277 G4int iplab = G4int( pOriginal*10.0 );
278 if( iplab > 9 )iplab = G4int( (pOriginal- 1.0)*5.0 ) + 10;
279 if( iplab > 14 )iplab = G4int( pOriginal- 2.0 ) + 15;
280 if( iplab > 22 )iplab = G4int( (pOriginal-10.0)/10.0 ) + 23;
281 if( iplab > 24 )iplab = 24;
282 if( G4UniformRand() > anhl[iplab] )
283 {
284 if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
285 { // not energetically possible to produce pion(s)
286 quasiElastic = true;
287 return;
288 }
289 G4double n, anpn;
290 GetNormalizationConstant( availableEnergy, n, anpn );
291 G4double ran = G4UniformRand();
292 G4double dum, excs = 0.0;
293 if( targetParticle.GetDefinition() == aProton )
294 {
295 G4int counter = -1;
296 for( np=0; np<numSec/3 && ran>=excs; ++np )
297 {
298 for( nneg=std::max(0,np-2); nneg<=(np+1) && ran>=excs; ++nneg )
299 {
300 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
301 {
302 if( ++counter < numMul )
303 {
304 nt = np+nneg+nz;
305 if( nt>0 && nt<=numSec )
306 {
307 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
308 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
309 if( std::fabs(dum) < 1.0 )
310 {
311 if( test >= 1.0e-10 )excs += dum*test;
312 }
313 else
314 excs += dum*test;
315 }
316 }
317 }
318 }
319 }
320 if( ran >= excs ) // 3 previous loops continued to the end
321 {
322 quasiElastic = true;
323 return;
324 }
325 np--; nneg--; nz--;
326 G4int ncht = std::min( 4, std::max( 1, np-nneg+2 ) );
327 switch( ncht )
328 {
329 case 1:
330 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
331 incidentHasChanged = true;
332 break;
333 case 2:
334 if( G4UniformRand() < 0.5 )
335 {
336 if( G4UniformRand() < 0.5 )
337 {
338 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
339 incidentHasChanged = true;
340 }
341 else
342 {
343 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
344 incidentHasChanged = true;
345 targetParticle.SetDefinitionAndUpdateE( aNeutron );
346 targetHasChanged = true;
347 }
348 }
349 else
350 {
351 if( G4UniformRand() >= 0.5 )
352 {
353 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
354 incidentHasChanged = true;
355 targetParticle.SetDefinitionAndUpdateE( aNeutron );
356 targetHasChanged = true;
357 }
358 }
359 break;
360 case 3:
361 if( G4UniformRand() < 0.5 )
362 {
363 if( G4UniformRand() < 0.5 )
364 {
365 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
366 incidentHasChanged = true;
367 targetParticle.SetDefinitionAndUpdateE( aNeutron );
368 targetHasChanged = true;
369 }
370 else
371 {
372 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
373 incidentHasChanged = true;
374 }
375 }
376 else
377 {
378 if( G4UniformRand() < 0.5 )
379 {
380 targetParticle.SetDefinitionAndUpdateE( aNeutron );
381 targetHasChanged = true;
382 }
383 else
384 {
385 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
386 incidentHasChanged = true;
387 }
388 }
389 break;
390 case 4:
391 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
392 incidentHasChanged = true;
393 targetParticle.SetDefinitionAndUpdateE( aNeutron );
394 targetHasChanged = true;
395 break;
396 }
397 }
398 else // target must be a neutron
399 {
400 G4int counter = -1;
401 for( np=0; np<numSec/3 && ran>=excs; ++np )
402 {
403 for( nneg=std::max(0,np-1); nneg<=(np+2) && ran>=excs; ++nneg )
404 {
405 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
406 {
407 if( ++counter < numMul )
408 {
409 nt = np+nneg+nz;
410 if( nt>0 && nt<=numSec )
411 {
412 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
413 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
414 if( std::fabs(dum) < 1.0 )
415 {
416 if( test >= 1.0e-10 )excs += dum*test;
417 }
418 else
419 excs += dum*test;
420 }
421 }
422 }
423 }
424 }
425 if( ran >= excs ) // 3 previous loops continued to the end
426 {
427 quasiElastic = true;
428 return;
429 }
430 np--; nneg--; nz--;
431 G4int ncht = std::min( 4, std::max( 1, np-nneg+3 ) );
432 switch( ncht )
433 {
434 case 1:
435 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
436 incidentHasChanged = true;
437 targetParticle.SetDefinitionAndUpdateE( aProton );
438 targetHasChanged = true;
439 break;
440 case 2:
441 if( G4UniformRand() < 0.5 )
442 {
443 if( G4UniformRand() < 0.5 )
444 {
445 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
446 incidentHasChanged = true;
447 targetParticle.SetDefinitionAndUpdateE( aProton );
448 targetHasChanged = true;
449 }
450 else
451 {
452 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
453 incidentHasChanged = true;
454 }
455 }
456 else
457 {
458 if( G4UniformRand() < 0.5 )
459 {
460 targetParticle.SetDefinitionAndUpdateE( aProton );
461 targetHasChanged = true;
462 }
463 else
464 {
465 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
466 incidentHasChanged = true;
467 }
468 }
469 break;
470 case 3:
471 if( G4UniformRand() < 0.5 )
472 {
473 if( G4UniformRand() < 0.5 )
474 {
475 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
476 incidentHasChanged = true;
477 }
478 else
479 {
480 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
481 incidentHasChanged = true;
482 targetParticle.SetDefinitionAndUpdateE( aProton );
483 targetHasChanged = true;
484 }
485 }
486 else
487 {
488 if( G4UniformRand() >= 0.5 )
489 {
490 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
491 incidentHasChanged = true;
492 targetParticle.SetDefinitionAndUpdateE( aProton );
493 targetHasChanged = true;
494 }
495 }
496 break;
497 default:
498 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
499 incidentHasChanged = true;
500 break;
501 }
502 }
503 }
504 else // random number <= anhl[iplab]
505 {
506 if( centerofmassEnergy <= aPiPlus->GetPDGMass()/MeV+aKaonPlus->GetPDGMass()/MeV )
507 {
508 quasiElastic = true;
509 return;
510 }
511 //
512 // annihilation channels
513 //
514 G4double n, anpn;
515 GetNormalizationConstant( -centerofmassEnergy, n, anpn );
516 G4double ran = G4UniformRand();
517 G4double dum, excs = 0.0;
518 if( targetParticle.GetDefinition() == aProton )
519 {
520 G4int counter = -1;
521 for( np=1; np<numSec/3 && ran>=excs; ++np )
522 {
523 nneg = np-1;
524 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
525 {
526 if( ++counter < numMulA )
527 {
528 nt = np+nneg+nz;
529 if( nt>1 && nt<=numSec )
530 {
531 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
532 dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
533 if( std::fabs(dum) < 1.0 )
534 {
535 if( test >= 1.0e-10 )excs += dum*test;
536 }
537 else
538 excs += dum*test;
539 }
540 }
541 }
542 }
543 }
544 else // target must be a neutron
545 {
546 G4int counter = -1;
547 for( np=0; np<numSec/3 && ran>=excs; ++np )
548 {
549 nneg = np;
550 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
551 {
552 if( ++counter < numMulA )
553 {
554 nt = np+nneg+nz;
555 if( nt>1 && nt<=numSec )
556 {
557 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
558 dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
559 if( std::fabs(dum) < 1.0 )
560 {
561 if( test >= 1.0e-10 )excs += dum*test;
562 }
563 else
564 excs += dum*test;
565 }
566 }
567 }
568 }
569 }
570 if( ran >= excs ) // 3 previous loops continued to the end
571 {
572 quasiElastic = true;
573 return;
574 }
575 np--; nz--;
576 currentParticle.SetMass( 0.0 );
577 targetParticle.SetMass( 0.0 );
578 }
579 SetUpPions( np, nneg, nz, vec, vecLen );
580 if( currentParticle.GetMass() == 0.0 )
581 {
582 if( nz == 0 )
583 {
584 if( nneg > 0 )
585 {
586 for( G4int i=0; i<vecLen; ++i )
587 {
588 if( vec[i]->GetDefinition() == aPiMinus )
589 {
590 vec[i]->SetDefinitionAndUpdateE( aKaonMinus );
591 break;
592 }
593 }
594 }
595 }
596 else // nz > 0
597 {
598 if( nneg == 0 )
599 {
600 for( G4int i=0; i<vecLen; ++i )
601 {
602 if( vec[i]->GetDefinition() == aPiZero )
603 {
604 vec[i]->SetDefinitionAndUpdateE( aKaonZL );
605 break;
606 }
607 }
608 }
609 else // nneg > 0
610 {
611 if( G4UniformRand() < 0.5 )
612 {
613 if( nneg > 0 )
614 {
615 for( G4int i=0; i<vecLen; ++i )
616 {
617 if( vec[i]->GetDefinition() == aPiMinus )
618 {
619 vec[i]->SetDefinitionAndUpdateE( aKaonMinus );
620 break;
621 }
622 }
623 }
624 }
625 else // random number >= 0.5
626 {
627 for( G4int i=0; i<vecLen; ++i )
628 {
629 if( vec[i]->GetDefinition() == aPiZero )
630 {
631 vec[i]->SetDefinitionAndUpdateE( aKaonZL );
632 break;
633 }
634 }
635 }
636 }
637 }
638 }
639 return;
640}
641
642 /* end of file */
643
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double mag() const
static G4AntiSigmaMinus * AntiSigmaMinus()
static G4AntiSigmaPlus * AntiSigmaPlus()
static G4AntiSigmaZero * AntiSigmaZero()
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:112
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:112
static G4KaonZeroLong * KaonZeroLong()
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4PionZero * PionZero()
Definition: G4PionZero.cc:107
static G4Proton * Proton()
Definition: G4Proton.cc:92
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMass(const G4double mas)
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77