128 if ( gamma < 1.0e3 || 0.0 == particleCharge) { MeanFreePath =
DBL_MAX; }
133 const G4Field* pField =
nullptr;
134 G4bool fieldExertsForce =
false;
140 if ( fieldMgr !=
nullptr )
147 if ( fieldExertsForce )
152 G4double globPosVec[4], FieldValueVec[6];
154 globPosVec[0] = globPosition.
x();
155 globPosVec[1] = globPosition.
y();
156 globPosVec[2] = globPosition.
z();
169 static const G4double fLambdaConst = std::sqrt(3.0)*eplus/
170 (2.5*fine_structure_const*c_light);
176 /(perpB*particleCharge*particleCharge);
180 G4cout <<
"G4SynchrotronRadiation::GetMeanFreePath "
184 <<
" MeanFreePath = " <<
G4BestUnit(MeanFreePath,
"Length")
191 G4double rho = ptot / (MeV * c_light * Btot );
195 G4cout <<
" B = " << Btot/tesla <<
" Tesla"
196 <<
" perpB = " << perpB/tesla <<
" Tesla"
197 <<
" Theta = " << Theta <<
" std::sin(Theta)="
198 << std::sin(Theta) <<
'\n'
227 if(gamma <= 1.0e3 || 0.0 == particleCharge)
233 const G4Field* pField =
nullptr;
235 G4bool fieldExertsForce =
false;
239 if ( fieldMgr !=
nullptr )
245 if ( fieldExertsForce )
249 G4double globPosVec[4], FieldValueVec[6];
250 globPosVec[0] = globPosition.
x();
251 globPosVec[1] = globPosition.
y();
252 globPosVec[2] = globPosition.
z();
273 if( energyOfSR <= 0.0 )
283 gammaPolarization = gammaPolarization.
unit();
291 gammaPolarization.
y(),
292 gammaPolarization.
z() );
299 G4double newKinEnergy = kineticEnergy - energyOfSR;
301 if (newKinEnergy > 0.)
322 static const G4double aa1=0 ,aa2=0.7;
323 static const G4int ncheb1=27;
325 { 1.22371665676046468821,0.108956475422163837267,0.0383328524358594396134,0.00759138369340257753721,
326 0.00205712048644963340914,0.000497810783280019308661,0.000130743691810302187818,0.0000338168760220395409734,
327 8.97049680900520817728e-6,2.38685472794452241466e-6,6.41923109149104165049e-7,1.73549898982749277843e-7,
328 4.72145949240790029153e-8,1.29039866111999149636e-8,3.5422080787089834182e-9,9.7594757336403784905e-10,
329 2.6979510184976065731e-10,7.480422622550977077e-11,2.079598176402699913e-11,5.79533622220841193e-12,
330 1.61856011449276096e-12,4.529450993473807e-13,1.2698603951096606e-13,3.566117394511206e-14,1.00301587494091e-14,
331 2.82515346447219e-15,7.9680747949792e-16};
333 static const G4double aa3=0.9132260271183847;
334 static const G4int ncheb2=27;
336 { 1.1139496701107756,0.3523967429328067,0.0713849171926623,0.01475818043595387,0.003381255637322462,
337 0.0008228057599452224,0.00020785506681254216,0.00005390169253706556,0.000014250571923902464,3.823880733161044e-6,
338 1.0381966089136036e-6,2.8457557457837253e-7,7.86223332179956e-8,2.1866609342508474e-8,6.116186259857143e-9,
339 1.7191233618437565e-9,4.852755117740807e-10,1.3749966961763457e-10,3.908961987062447e-11,1.1146253766895824e-11,
340 3.1868887323415814e-12,9.134319791300977e-13,2.6211077371181566e-13,7.588643377757906e-14,2.1528376972619e-14,
341 6.030906040404772e-15,1.9549163926819867e-15};
344 static const G4double aa4=2.4444485538746025480,aa5=9.3830728608909477079;
345 static const G4int ncheb3=28;
347 { 1.2292683840435586977,0.160353449247864455879,-0.0353559911947559448721,0.00776901561223573936985,
348 -0.00165886451971685133259,0.000335719118906954279467,-0.0000617184951079161143187,9.23534039743246708256e-6,
349 -6.06747198795168022842e-7,-3.07934045961999778094e-7,1.98818772614682367781e-7,-8.13909971567720135413e-8,
350 2.84298174969641838618e-8,-9.12829766621316063548e-9,2.77713868004820551077e-9,-8.13032767247834023165e-10,
351 2.31128525568385247392e-10,-6.41796873254200220876e-11,1.74815310473323361543e-11,-4.68653536933392363045e-12,
352 1.24016595805520752748e-12,-3.24839432979935522159e-13,8.44601465226513952994e-14,-2.18647276044246803998e-14,
353 5.65407548745690689978e-15,-1.46553625917463067508e-15,3.82059606377570462276e-16,-1.00457896653436912508e-16};
354 static const G4double aa6=33.122936966163038145;
355 static const G4int ncheb4=27;
357 {1.69342658227676741765,0.0742766400841232319225,-0.019337880608635717358,0.00516065527473364110491,
358 -0.00139342012990307729473,0.000378549864052022522193,-0.000103167085583785340215,0.0000281543441271412178337,
359 -7.68409742018258198651e-6,2.09543221890204537392e-6,-5.70493140367526282946e-7,1.54961164548564906446e-7,
360 -4.19665599629607704794e-8,1.13239680054166507038e-8,-3.04223563379021441863e-9,8.13073745977562957997e-10,
361 -2.15969415476814981374e-10,5.69472105972525594811e-11,-1.48844799572430829499e-11,3.84901514438304484973e-12,
362 -9.82222575944247161834e-13,2.46468329208292208183e-13,-6.04953826265982691612e-14,1.44055805710671611984e-14,
363 -3.28200813577388740722e-15,6.96566359173765367675e-16,-1.294122794852896275e-16};
365 if(x<aa2)
return x*x*x*
Chebyshev(aa1,aa2,cheb1,ncheb1,x);
366 else if(x<aa3)
return Chebyshev(aa2,aa3,cheb2,ncheb2,x);
367 else if(x<1-0.0000841363)
369 return y*
Chebyshev(aa4,aa5,cheb3,ncheb3,y);
373 return y*
Chebyshev(aa5,aa6,cheb4,ncheb4,y);
381 static const G4double fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck;
382 G4double Ecr=fEnergyConst*gamma*gamma*perpB/mass_c2;
387 G4double Emean=8./(15.*std::sqrt(3.))*Ecr;
388 G4double E_rms=std::sqrt(211./675.)*Ecr;
390 G4cout <<
"G4SynchrotronRadiation::GetRandomEnergySR :" <<
'\n'
391 << std::setprecision(4)
392 <<
" Ecr = " <<
G4BestUnit(Ecr,
"Energy") <<
'\n'
393 <<
" Emean = " <<
G4BestUnit(Emean,
"Energy") <<
'\n'
421 G4String comments =
"Incoherent Synchrotron Radiation\n";
423 <<
" good description for long magnets at all energies"
G4double condition(const G4ErrorSymMatrix &m)
G4double G4Log(G4double x)
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
Hep3Vector cross(const Hep3Vector &) const
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const G4double Point[4], G4double *fieldArr) const =0
static G4LossTableManager * Instance()
void DeRegister(G4VEnergyLossProcess *p)
void Register(G4VEnergyLossProcess *p)
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
virtual void Initialize(const G4Track &)
G4bool IsShortLived() const
G4double GetPDGMass() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
virtual void PrintInfoDefinition()
void SetAngularGenerator(G4VEmAngularDistribution *p)
virtual G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition) override
G4SynchrotronRadiation(const G4String &pName="SynRad", G4ProcessType type=fElectromagnetic)
G4double GetRandomEnergySR(G4double, G4double, G4double)
virtual ~G4SynchrotronRadiation()
G4double Chebyshev(G4double a, G4double b, const G4double c[], G4int n, G4double x)
virtual void BuildPhysicsTable(const G4ParticleDefinition &) override
virtual G4bool IsApplicable(const G4ParticleDefinition &) override
virtual G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step) override
G4double InvSynFracInt(G4double x)
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
G4double GetGlobalTime() const
const G4DynamicParticle * GetDynamicParticle() const
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
void SetProcessSubType(G4int)
const G4String & GetProcessName() const