Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4SynchrotronRadiation.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// --------------------------------------------------------------
29// GEANT 4 class implementation file
30// CERN Geneva Switzerland
31//
32// History: first implementation,
33// 21-5-98 V.Grichine
34// 28-05-01, V.Ivanchenko minor changes to provide ANSI -wall compilation
35// 04.03.05, V.Grichine: get local field interface
36// 18-05-06 H. Burkhardt: Energy spectrum from function rather than table
37//
38//
39//
40//
41///////////////////////////////////////////////////////////////////////////
42
45#include "G4SystemOfUnits.hh"
46#include "G4UnitsTable.hh"
47#include "G4EmProcessSubType.hh"
48#include "G4DipBustGenerator.hh"
49#include "G4Log.hh"
50#include "G4LossTableManager.hh"
51
52///////////////////////////////////////////////////////////////////////
53//
54// Constructor
55//
56
58 G4ProcessType type):G4VDiscreteProcess (processName, type),
59 theGamma (G4Gamma::Gamma() )
60{
61 G4TransportationManager* transportMgr =
63
64 fFieldPropagator = transportMgr->GetPropagatorInField();
65
67 verboseLevel = 1;
68 FirstTime = true;
69 FirstTime1 = true;
70 genAngle = nullptr;
72 theManager = G4LossTableManager::Instance();
73 theManager->Register(this);
74}
75
76/////////////////////////////////////////////////////////////////////////
77//
78// Destructor
79//
80
82{
83 delete genAngle;
84 theManager->DeRegister(this);
85}
86
87/////////////////////////////// METHODS /////////////////////////////////
88//
89
90void
92{
93 if(p != genAngle) {
94 delete genAngle;
95 genAngle = p;
96 }
97}
98
101{
102 return (particle.GetPDGCharge() != 0.0 && !particle.IsShortLived());
103}
104
105/////////////////////////////////////////////////////////////////////////
106//
107// Production of synchrotron X-ray photon
108// GEANT4 internal units.
109//
110
113 G4double,
115{
116 // gives the MeanFreePath in GEANT4 internal units
117 G4double MeanFreePath = DBL_MAX;
118
119 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle();
120
122
123 G4double gamma = aDynamicParticle->GetTotalEnergy()/
124 aDynamicParticle->GetMass();
125
126 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
127
128 if ( gamma < 1.0e3 || 0.0 == particleCharge) { MeanFreePath = DBL_MAX; }
129 else
130 {
131
132 G4ThreeVector FieldValue;
133 const G4Field* pField = nullptr;
134 G4bool fieldExertsForce = false;
135
136
137 G4FieldManager* fieldMgr =
138 fFieldPropagator->FindAndSetFieldManager(trackData.GetVolume());
139
140 if ( fieldMgr != nullptr )
141 {
142 // If the field manager has no field, there is no field !
143
144 fieldExertsForce = ( fieldMgr->GetDetectorField() != nullptr );
145 }
146
147 if ( fieldExertsForce )
148 {
149 pField = fieldMgr->GetDetectorField();
150 G4ThreeVector globPosition = trackData.GetPosition();
151
152 G4double globPosVec[4], FieldValueVec[6];
153
154 globPosVec[0] = globPosition.x();
155 globPosVec[1] = globPosition.y();
156 globPosVec[2] = globPosition.z();
157 globPosVec[3] = trackData.GetGlobalTime();
158
159 pField->GetFieldValue( globPosVec, FieldValueVec );
160
161 FieldValue = G4ThreeVector( FieldValueVec[0],
162 FieldValueVec[1],
163 FieldValueVec[2] );
164
165 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
166 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
167 G4double perpB = unitMcrossB.mag();
168
169 static const G4double fLambdaConst = std::sqrt(3.0)*eplus/
170 (2.5*fine_structure_const*c_light);
171
172 if( perpB > 0.0 )
173 {
174 MeanFreePath =
175 fLambdaConst*aDynamicParticle->GetDefinition()->GetPDGMass()
176 /(perpB*particleCharge*particleCharge);
177 }
178 if(verboseLevel > 0 && FirstTime)
179 {
180 G4cout << "G4SynchrotronRadiation::GetMeanFreePath "
181 << " for particle "
182 << aDynamicParticle->GetDefinition()->GetParticleName()
183 << ":" << '\n' //hbunew
184 << " MeanFreePath = " << G4BestUnit(MeanFreePath, "Length")
185 << G4endl;
186 if(verboseLevel > 1)
187 {
188 G4ThreeVector pvec = aDynamicParticle->GetMomentum();
189 G4double Btot = FieldValue.getR();
190 G4double ptot = pvec.getR();
191 G4double rho = ptot / (MeV * c_light * Btot );
192 // full bending radius
193 G4double Theta=unitMomentum.theta(FieldValue);
194 // angle between particle and field
195 G4cout << " B = " << Btot/tesla << " Tesla"
196 << " perpB = " << perpB/tesla << " Tesla"
197 << " Theta = " << Theta << " std::sin(Theta)="
198 << std::sin(Theta) << '\n'
199 << " ptot = " << G4BestUnit(ptot,"Energy")
200 << " rho = " << G4BestUnit(rho,"Length")
201 << G4endl;
202 }
203 FirstTime=false;
204 }
205 }
206 }
207 return MeanFreePath;
208}
209
210///////////////////////////////////////////////////////////////////////////////
211//
212//
213
216 const G4Step& stepData )
217
218{
219 aParticleChange.Initialize(trackData);
220
221 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle();
222
223 G4double gamma = aDynamicParticle->GetTotalEnergy()/
224 (aDynamicParticle->GetDefinition()->GetPDGMass());
225
226 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
227 if(gamma <= 1.0e3 || 0.0 == particleCharge)
228 {
229 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
230 }
231
232 G4ThreeVector FieldValue;
233 const G4Field* pField = nullptr;
234
235 G4bool fieldExertsForce = false;
236 G4FieldManager* fieldMgr =
237 fFieldPropagator->FindAndSetFieldManager(trackData.GetVolume());
238
239 if ( fieldMgr != nullptr )
240 {
241 // If the field manager has no field, there is no field !
242 fieldExertsForce = ( fieldMgr->GetDetectorField() != nullptr );
243 }
244
245 if ( fieldExertsForce )
246 {
247 pField = fieldMgr->GetDetectorField();
248 G4ThreeVector globPosition = trackData.GetPosition();
249 G4double globPosVec[4], FieldValueVec[6];
250 globPosVec[0] = globPosition.x();
251 globPosVec[1] = globPosition.y();
252 globPosVec[2] = globPosition.z();
253 globPosVec[3] = trackData.GetGlobalTime();
254
255 pField->GetFieldValue( globPosVec, FieldValueVec );
256 FieldValue = G4ThreeVector( FieldValueVec[0],
257 FieldValueVec[1],
258 FieldValueVec[2] );
259
260 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
261 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
262 G4double perpB = unitMcrossB.mag();
263 if(perpB > 0.0)
264 {
265 // M-C of synchrotron photon energy
266
267 G4double energyOfSR =
268 GetRandomEnergySR(gamma,perpB,
269 aDynamicParticle->GetDefinition()->GetPDGMass());
270
271 // check against insufficient energy
272
273 if( energyOfSR <= 0.0 )
274 {
275 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
276 }
277 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
278 G4ThreeVector gammaDirection =
279 genAngle->SampleDirection(aDynamicParticle,
280 energyOfSR, 1, 0);
281
282 G4ThreeVector gammaPolarization = FieldValue.cross(gammaDirection);
283 gammaPolarization = gammaPolarization.unit();
284
285 // create G4DynamicParticle object for the SR photon
286
287 G4DynamicParticle* aGamma= new G4DynamicParticle ( theGamma,
288 gammaDirection,
289 energyOfSR );
290 aGamma->SetPolarization( gammaPolarization.x(),
291 gammaPolarization.y(),
292 gammaPolarization.z() );
293
296
297 // Update the incident particle
298
299 G4double newKinEnergy = kineticEnergy - energyOfSR;
300
301 if (newKinEnergy > 0.)
302 {
303 aParticleChange.ProposeEnergy( newKinEnergy );
304 }
305 else
306 {
308 }
309 }
310 }
311 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
312}
313
314///////////////////////////////////////////////////////////////////////////////
315//
316//
317
319// direct generation
320{
321 // from 0 to 0.7
322 static const G4double aa1=0 ,aa2=0.7;
323 static const G4int ncheb1=27;
324 static const G4double cheb1[] =
325 { 1.22371665676046468821,0.108956475422163837267,0.0383328524358594396134,0.00759138369340257753721,
326 0.00205712048644963340914,0.000497810783280019308661,0.000130743691810302187818,0.0000338168760220395409734,
327 8.97049680900520817728e-6,2.38685472794452241466e-6,6.41923109149104165049e-7,1.73549898982749277843e-7,
328 4.72145949240790029153e-8,1.29039866111999149636e-8,3.5422080787089834182e-9,9.7594757336403784905e-10,
329 2.6979510184976065731e-10,7.480422622550977077e-11,2.079598176402699913e-11,5.79533622220841193e-12,
330 1.61856011449276096e-12,4.529450993473807e-13,1.2698603951096606e-13,3.566117394511206e-14,1.00301587494091e-14,
331 2.82515346447219e-15,7.9680747949792e-16};
332 // from 0.7 to 0.9132260271183847
333 static const G4double aa3=0.9132260271183847;
334 static const G4int ncheb2=27;
335 static const G4double cheb2[] =
336 { 1.1139496701107756,0.3523967429328067,0.0713849171926623,0.01475818043595387,0.003381255637322462,
337 0.0008228057599452224,0.00020785506681254216,0.00005390169253706556,0.000014250571923902464,3.823880733161044e-6,
338 1.0381966089136036e-6,2.8457557457837253e-7,7.86223332179956e-8,2.1866609342508474e-8,6.116186259857143e-9,
339 1.7191233618437565e-9,4.852755117740807e-10,1.3749966961763457e-10,3.908961987062447e-11,1.1146253766895824e-11,
340 3.1868887323415814e-12,9.134319791300977e-13,2.6211077371181566e-13,7.588643377757906e-14,2.1528376972619e-14,
341 6.030906040404772e-15,1.9549163926819867e-15};
342 // Chebyshev with exp/log scale
343 // a = -Log[1 - SynFracInt[1]]; b = -Log[1 - SynFracInt[7]];
344 static const G4double aa4=2.4444485538746025480,aa5=9.3830728608909477079;
345 static const G4int ncheb3=28;
346 static const G4double cheb3[] =
347 { 1.2292683840435586977,0.160353449247864455879,-0.0353559911947559448721,0.00776901561223573936985,
348 -0.00165886451971685133259,0.000335719118906954279467,-0.0000617184951079161143187,9.23534039743246708256e-6,
349 -6.06747198795168022842e-7,-3.07934045961999778094e-7,1.98818772614682367781e-7,-8.13909971567720135413e-8,
350 2.84298174969641838618e-8,-9.12829766621316063548e-9,2.77713868004820551077e-9,-8.13032767247834023165e-10,
351 2.31128525568385247392e-10,-6.41796873254200220876e-11,1.74815310473323361543e-11,-4.68653536933392363045e-12,
352 1.24016595805520752748e-12,-3.24839432979935522159e-13,8.44601465226513952994e-14,-2.18647276044246803998e-14,
353 5.65407548745690689978e-15,-1.46553625917463067508e-15,3.82059606377570462276e-16,-1.00457896653436912508e-16};
354 static const G4double aa6=33.122936966163038145;
355 static const G4int ncheb4=27;
356 static const G4double cheb4[] =
357 {1.69342658227676741765,0.0742766400841232319225,-0.019337880608635717358,0.00516065527473364110491,
358 -0.00139342012990307729473,0.000378549864052022522193,-0.000103167085583785340215,0.0000281543441271412178337,
359 -7.68409742018258198651e-6,2.09543221890204537392e-6,-5.70493140367526282946e-7,1.54961164548564906446e-7,
360 -4.19665599629607704794e-8,1.13239680054166507038e-8,-3.04223563379021441863e-9,8.13073745977562957997e-10,
361 -2.15969415476814981374e-10,5.69472105972525594811e-11,-1.48844799572430829499e-11,3.84901514438304484973e-12,
362 -9.82222575944247161834e-13,2.46468329208292208183e-13,-6.04953826265982691612e-14,1.44055805710671611984e-14,
363 -3.28200813577388740722e-15,6.96566359173765367675e-16,-1.294122794852896275e-16};
364
365 if(x<aa2) return x*x*x*Chebyshev(aa1,aa2,cheb1,ncheb1,x);
366 else if(x<aa3) return Chebyshev(aa2,aa3,cheb2,ncheb2,x);
367 else if(x<1-0.0000841363)
368 { G4double y=-G4Log(1-x);
369 return y*Chebyshev(aa4,aa5,cheb3,ncheb3,y);
370 }
371 else
372 { G4double y=-G4Log(1-x);
373 return y*Chebyshev(aa5,aa6,cheb4,ncheb4,y);
374 }
375}
376
378 G4double gamma, G4double perpB, G4double mass_c2)
379{
380
381 static const G4double fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck;
382 G4double Ecr=fEnergyConst*gamma*gamma*perpB/mass_c2;
383
384 if(verboseLevel > 0 && FirstTime1)
385 {
386 // mean and rms of photon energy
387 G4double Emean=8./(15.*std::sqrt(3.))*Ecr;
388 G4double E_rms=std::sqrt(211./675.)*Ecr;
389 G4int prec = G4cout.precision();
390 G4cout << "G4SynchrotronRadiation::GetRandomEnergySR :" << '\n'
391 << std::setprecision(4)
392 << " Ecr = " << G4BestUnit(Ecr,"Energy") << '\n'
393 << " Emean = " << G4BestUnit(Emean,"Energy") << '\n'
394 << " E_rms = " << G4BestUnit(E_rms,"Energy") << G4endl;
395 FirstTime1=false;
396 G4cout.precision(prec);
397 }
398
399 G4double energySR=Ecr*InvSynFracInt(G4UniformRand());
400 return energySR;
401}
402
403///////////////////////////////////////////////////////////////////////////////
404//
405//
406
407void
409{
411 // same for all particles, print only for one (electron)
412}
413
414///////////////////////////////////////////////////////////////////////////////
415//
416//
417
419// not yet called, usually called from BuildPhysicsTable
420{
421 G4String comments ="Incoherent Synchrotron Radiation\n";
422 G4cout << G4endl << GetProcessName() << ": " << comments
423 << " good description for long magnets at all energies"
424 << G4endl;
425}
426
427///////////////////// end of G4SynchrotronRadiation.cc
@ fSynchrotronRadiation
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ NotForced
G4double G4Log(G4double x)
Definition: G4Log.hh:226
G4ProcessType
#define G4BestUnit(a, b)
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double theta() const
double x() const
double getR() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double mag() const
G4double GetMass() const
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const G4double Point[4], G4double *fieldArr) const =0
static G4LossTableManager * Instance()
void DeRegister(G4VEnergyLossProcess *p)
void Register(G4VEnergyLossProcess *p)
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
virtual void Initialize(const G4Track &)
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
Definition: G4Step.hh:62
void SetAngularGenerator(G4VEmAngularDistribution *p)
virtual G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition) override
G4SynchrotronRadiation(const G4String &pName="SynRad", G4ProcessType type=fElectromagnetic)
G4double GetRandomEnergySR(G4double, G4double, G4double)
G4double Chebyshev(G4double a, G4double b, const G4double c[], G4int n, G4double x)
virtual void BuildPhysicsTable(const G4ParticleDefinition &) override
virtual G4bool IsApplicable(const G4ParticleDefinition &) override
virtual G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step) override
G4double InvSynFracInt(G4double x)
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
G4double GetGlobalTime() const
const G4DynamicParticle * GetDynamicParticle() const
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:327
G4int verboseLevel
Definition: G4VProcess.hh:356
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:406
const G4String & GetProcessName() const
Definition: G4VProcess.hh:382
#define DBL_MAX
Definition: templates.hh:62