Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsHyperonElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// G4 Physics class: G4ChipsHyperonElasticXS for pA elastic cross sections
30// Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
31// The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
32//
33// -------------------------------------------------------------------------------
34// Short description: Interaction cross-sections for the elastic process.
35// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
36// -------------------------------------------------------------------------------
37//
38
40#include "G4SystemOfUnits.hh"
41#include "G4DynamicParticle.hh"
43#include "G4Lambda.hh"
44#include "G4SigmaPlus.hh"
45#include "G4SigmaMinus.hh"
46#include "G4SigmaZero.hh"
47#include "G4XiMinus.hh"
48#include "G4XiZero.hh"
49#include "G4OmegaMinus.hh"
50#include "G4Nucleus.hh"
51#include "G4ParticleTable.hh"
52#include "G4NucleiProperties.hh"
53#include "G4IonTable.hh"
54#include "G4Exp.hh"
55#include "G4Log.hh"
56#include "G4Pow.hh"
57
58// factory
60//
62
63G4ChipsHyperonElasticXS::G4ChipsHyperonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
64{
65 lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
66 lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
67 dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
68 onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
69 lastSIG=0.; //Last calculated cross section (L)
70 lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
71 lastTM=0.; //Last t_maximum (L)
72 theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
73 theS1=0.; //TheLastMantissa of 1st difrMax(L)
74 theB1=0.; //TheLastSlope of 1st difructMax(L)
75 theS2=0.; //TheLastMantissa of 2nd difrMax(L)
76 theB2=0.; //TheLastSlope of 2nd difructMax(L)
77 theS3=0.; //TheLastMantissa of 3d difr.Max(L)
78 theB3=0.; //TheLastSlope of 3d difruct.Max(L)
79 theS4=0.; //TheLastMantissa of 4th difrMax(L)
80 theB4=0.; //TheLastSlope of 4th difructMax(L)
81 lastTZ=0; // Last atomic number of the target
82 lastTN=0; // Last # of neutrons in the target
83 lastPIN=0.; // Last initialized max momentum
84 lastCST=0; // Elastic cross-section table
85 lastPAR=0; // ParametersForFunctionCalculation
86 lastSST=0; // E-dep ofSqardSlope of 1st difMax
87 lastS1T=0; // E-dep of mantissa of 1st dif.Max
88 lastB1T=0; // E-dep of the slope of 1st difMax
89 lastS2T=0; // E-dep of mantissa of 2nd difrMax
90 lastB2T=0; // E-dep of the slope of 2nd difMax
91 lastS3T=0; // E-dep of mantissa of 3d difr.Max
92 lastB3T=0; // E-dep of the slope of 3d difrMax
93 lastS4T=0; // E-dep of mantissa of 4th difrMax
94 lastB4T=0; // E-dep of the slope of 4th difMax
95 lastN=0; // The last N of calculated nucleus
96 lastZ=0; // The last Z of calculated nucleus
97 lastP=0.; // LastUsed inCrossSection Momentum
98 lastTH=0.; // Last threshold momentum
99 lastCS=0.; // Last value of the Cross Section
100 lastI=0; // The last position in the DAMDB
101}
102
104{
105 std::vector<G4double*>::iterator pos;
106 for (pos=CST.begin(); pos<CST.end(); pos++)
107 { delete [] *pos; }
108 CST.clear();
109 for (pos=PAR.begin(); pos<PAR.end(); pos++)
110 { delete [] *pos; }
111 PAR.clear();
112 for (pos=SST.begin(); pos<SST.end(); pos++)
113 { delete [] *pos; }
114 SST.clear();
115 for (pos=S1T.begin(); pos<S1T.end(); pos++)
116 { delete [] *pos; }
117 S1T.clear();
118 for (pos=B1T.begin(); pos<B1T.end(); pos++)
119 { delete [] *pos; }
120 B1T.clear();
121 for (pos=S2T.begin(); pos<S2T.end(); pos++)
122 { delete [] *pos; }
123 S2T.clear();
124 for (pos=B2T.begin(); pos<B2T.end(); pos++)
125 { delete [] *pos; }
126 B2T.clear();
127 for (pos=S3T.begin(); pos<S3T.end(); pos++)
128 { delete [] *pos; }
129 S3T.clear();
130 for (pos=B3T.begin(); pos<B3T.end(); pos++)
131 { delete [] *pos; }
132 B3T.clear();
133 for (pos=S4T.begin(); pos<S4T.end(); pos++)
134 { delete [] *pos; }
135 S4T.clear();
136 for (pos=B4T.begin(); pos<B4T.end(); pos++)
137 { delete [] *pos; }
138 B4T.clear();
139}
140
141void
143{
144 outFile << "G4ChipsHyperonElasticXS provides the elastic cross\n"
145 << "section for hyperon nucleus scattering as a function of incident\n"
146 << "momentum. The cross section is calculated using M. Kossov's\n"
147 << "CHIPS parameterization of cross section data.\n";
148}
149
151 const G4Element*,
152 const G4Material*)
153{
154 return true;
155}
156
157// The main member function giving the collision cross section (P is in IU, CS is in mb)
158// Make pMom in independent units ! (Now it is MeV)
160 const G4Isotope*,
161 const G4Element*,
162 const G4Material*)
163{
164 G4double pMom=Pt->GetTotalMomentum();
165 G4int tgN = A - tgZ;
166 G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
167
168 return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
169}
170
172{
173
174 G4bool fCS = false;
175 G4double pEn=pMom;
176
177 onlyCS=fCS;
178
179 G4bool in=false; // By default the isotope must be found in the AMDB
180 lastP = 0.; // New momentum history (nothing to compare with)
181 lastN = tgN; // The last N of the calculated nucleus
182 lastZ = tgZ; // The last Z of the calculated nucleus
183 lastI = colN.size(); // Size of the Associative Memory DB in the heap
184 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
185 { // The nucleus with projPDG is found in AMDB
186 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
187 {
188 lastI=i;
189 lastTH =colTH[i]; // Last THreshold (A-dependent)
190 if(pEn<=lastTH)
191 {
192 return 0.; // Energy is below the Threshold value
193 }
194 lastP =colP [i]; // Last Momentum (A-dependent)
195 lastCS =colCS[i]; // Last CrossSect (A-dependent)
196 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
197 if(lastP == pMom) // Do not recalculate
198 {
199 CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
200 return lastCS*millibarn; // Use theLastCS
201 }
202 in = true; // This is the case when the isotop is found in DB
203 // Momentum pMom is in IU ! @@ Units
204 lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
205 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
206 {
207 lastTH=pEn;
208 }
209 break; // Go out of the LOOP with found lastI
210 }
211 } // End of attampt to find the nucleus in DB
212 if(!in) // This nucleus has not been calculated previously
213 {
214 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
215 lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
216 if(lastCS<=0.)
217 {
218 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
219 if(pEn>lastTH)
220 {
221 lastTH=pEn;
222 }
223 }
224 colN.push_back(tgN);
225 colZ.push_back(tgZ);
226 colP.push_back(pMom);
227 colTH.push_back(lastTH);
228 colCS.push_back(lastCS);
229 return lastCS*millibarn;
230 } // End of creation of the new set of parameters
231 else
232 {
233 colP[lastI]=pMom;
234 colCS[lastI]=lastCS;
235 }
236 return lastCS*millibarn;
237}
238
239// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
240// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
241G4double G4ChipsHyperonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
242 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
243{
244 G4double pMom=pIU/GeV; // All calculations are in GeV
245 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
246 lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation
247 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
248 {
249 if(F<0) // the AMDB must be loded
250 {
251 lastPIN = PIN[I]; // Max log(P) initialised for this table set
252 lastPAR = PAR[I]; // Pointer to the parameter set
253
254 lastCST = CST[I]; // Pointer to the total sross-section table
255 lastSST = SST[I]; // Pointer to the first squared slope
256 lastS1T = S1T[I]; // Pointer to the first mantissa
257 lastB1T = B1T[I]; // Pointer to the first slope
258 lastS2T = S2T[I]; // Pointer to the second mantissa
259 lastB2T = B2T[I]; // Pointer to the second slope
260 lastS3T = S3T[I]; // Pointer to the third mantissa
261 lastB3T = B3T[I]; // Pointer to the rhird slope
262 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
263 lastB4T = B4T[I]; // Pointer to the 4-th slope
264 }
265 if(lastLP>lastPIN && lastLP<lPMax)
266 {
267 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
268 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
269 }
270 }
271 else // This isotope wasn't initialized => CREATE
272 {
273 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
274 lastPAR[nLast]=0; // Initialization for VALGRIND
275 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
276 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
277 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
278 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
279 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
280 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
281 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
282 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
283 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
284 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
285 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
286 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
287 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
288 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
289 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
290 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
291 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
292 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
293 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
294 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
295 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
296 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
297 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
298 } // End of creation/update of the new set of parameters and tables
299 // =-----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
300 if(lastLP>lastPIN && lastLP<lPMax)
301 {
302 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
303 }
304 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
305 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
306 {
307 if(lastLP==lastPIN)
308 {
309 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
310 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
311 if(blast<0 || blast>=nLast)G4cout<<"G4QHyperElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
312 lastSIG = lastCST[blast];
313 if(!onlyCS) // Skip the differential cross-section parameters
314 {
315 theSS = lastSST[blast];
316 theS1 = lastS1T[blast];
317 theB1 = lastB1T[blast];
318 theS2 = lastS2T[blast];
319 theB2 = lastB2T[blast];
320 theS3 = lastS3T[blast];
321 theB3 = lastB3T[blast];
322 theS4 = lastS4T[blast];
323 theB4 = lastB4T[blast];
324 }
325 }
326 else
327 {
328 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
329 G4int blast=static_cast<int>(shift); // the lower bin number
330 if(blast<0) blast=0;
331 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
332 shift-=blast; // step inside the unit bin
333 G4int lastL=blast+1; // the upper bin number
334 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
335 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
336 if(!onlyCS) // Skip the differential cross-section parameters
337 {
338 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
339 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
340 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
341 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
342 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
343 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
344 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
345 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
346 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
347 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
348 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
349 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
350 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
351 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
352 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
353 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
354 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
355 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
356 }
357 }
358 }
359 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
360 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
361 return lastSIG;
362}
363
364// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
365G4double G4ChipsHyperonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
366 G4int tgZ, G4int tgN)
367{
368 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
369 static const G4double pwd=2727;
370 const G4int n_hypel=33; // #of parameters for pp-elastic (<nPoints=128)
371 // -0- -1- -2- -3- -4- -5- -6--7--8--9--10--11--12-13--14-
372 G4double hyp_el[n_hypel]={1.,.002,.12,.0557,3.5,6.72,99.,2.,3.,5.,74.,3.,3.4,.2,.17,
373 .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,
374 1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
375 // -15--16- -17- -18- -19- -20- -21- -22- -23- -24- -25-
376 // -26- -27- -28- -29- -30- -31- -32-
377 //AR-04Jun2014 if(PDG!=3222 && PDG>3000 && PDG<3335)
378 if(PDG>3000 && PDG<3335)
379 {
380 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
381 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
382 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
383 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
384 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
385 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
386 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
387 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
388 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
389 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
390 //
391 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
392 {
393 if ( tgZ == 1 && tgN == 0 )
394 {
395 for (G4int ip=0; ip<n_hypel; ip++) lastPAR[ip]=hyp_el[ip]; // Hyperon+P
396 }
397 else
398 {
399 G4double a=tgZ+tgN;
400 G4double sa=std::sqrt(a);
401 G4double ssa=std::sqrt(sa);
402 G4double asa=a*sa;
403 G4double a2=a*a;
404 G4double a3=a2*a;
405 G4double a4=a3*a;
406 G4double a5=a4*a;
407 G4double a6=a4*a2;
408 G4double a7=a6*a;
409 G4double a8=a7*a;
410 G4double a9=a8*a;
411 G4double a10=a5*a5;
412 G4double a12=a6*a6;
413 G4double a14=a7*a7;
414 G4double a16=a8*a8;
415 G4double a17=a16*a;
416 //G4double a20=a16*a4;
417 G4double a32=a16*a16;
418 // Reaction cross-section parameters (pel=peh_fit.f)
419 lastPAR[0]=4./(1.+22/asa); // p1
420 lastPAR[1]=2.36*asa/(1.+a*.055/ssa); // p2
421 lastPAR[2]=(1.+.00007*a3/ssa)/(1.+.0026*a2); // p3
422 lastPAR[3]=1.76*a/ssa+.00003*a3; // p4
423 lastPAR[4]=(.03+200./a3)/(1.+1.E5/a3/sa); // p5
424 lastPAR[5]=5.; // p6
425 lastPAR[6]=0.; // p7 not used
426 lastPAR[7]=0.; // p8 not used
427 lastPAR[8]=0.; // p9 not used
428 // @@ the differential cross-section is parameterized separately for A>6 & A<7
429 if(a<6.5)
430 {
431 G4double a28=a16*a12;
432 // The main pre-exponent (pel_sg)
433 lastPAR[ 9]=4000*a; // p1
434 lastPAR[10]=1.2e7*a8+380*a17; // p2
435 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
436 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
437 lastPAR[13]=.28*a; // p5
438 lastPAR[14]=1.2*a2+2.3; // p6
439 lastPAR[15]=3.8/a; // p7
440 // The main slope (pel_sl)
441 lastPAR[16]=.01/(1.+.0024*a5); // p1
442 lastPAR[17]=.2*a; // p2
443 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
444 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
445 // The main quadratic (pel_sh)
446 lastPAR[20]=2.25*a3; // p1
447 lastPAR[21]=18.; // p2
448 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
449 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
450 // The 1st max pre-exponent (pel_qq)
451 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
452 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
453 lastPAR[26]=.0006*a3; // p3
454 // The 1st max slope (pel_qs)
455 lastPAR[27]=10.+4.e-8*a12*a; // p1
456 lastPAR[28]=.114; // p2
457 lastPAR[29]=.003; // p3
458 lastPAR[30]=2.e-23; // p4
459 // The effective pre-exponent (pel_ss)
460 lastPAR[31]=1./(1.+.0001*a8); // p1
461 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
462 lastPAR[33]=.03; // p3
463 // The effective slope (pel_sb)
464 lastPAR[34]=a/2; // p1
465 lastPAR[35]=2.e-7*a4; // p2
466 lastPAR[36]=4.; // p3
467 lastPAR[37]=64./a3; // p4
468 // The gloria pre-exponent (pel_us)
469 lastPAR[38]=1.e8*G4Exp(.32*asa); // p1
470 lastPAR[39]=20.*G4Exp(.45*asa); // p2
471 lastPAR[40]=7.e3+2.4e6/a5; // p3
472 lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4
473 lastPAR[42]=2.5*a; // p5
474 // The gloria slope (pel_ub)
475 lastPAR[43]=920.+.03*a8*a3; // p1
476 lastPAR[44]=93.+.0023*a12; // p2
477 }
478 else
479 {
480 G4double p1a10=2.2e-28*a10;
481 G4double r4a16=6.e14/a16;
482 G4double s4a16=r4a16*r4a16;
483 // a24
484 // a36
485 // The main pre-exponent (peh_sg)
486 lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1
487 lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2
488 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
489 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
490 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
491 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
492 // The main slope (peh_sl)
493 lastPAR[15]=400./a12+2.e-22*a9; // p1
494 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
495 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
496 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
497 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
498 lastPAR[20]=9.+100./a; // p6
499 // The main quadratic (peh_sh)
500 lastPAR[21]=.002*a3+3.e7/a6; // p1
501 lastPAR[22]=7.e-15*a4*asa; // p2
502 lastPAR[23]=9000./a4; // p3
503 // The 1st max pre-exponent (peh_qq)
504 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
505 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
506 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
507 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
508 // The 1st max slope (peh_qs)
509 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
510 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2
511 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
512 lastPAR[31]=100./asa; // p4
513 // The 2nd max pre-exponent (peh_ss)
514 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
515 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
516 lastPAR[34]=1.3+3.e5/a4; // p3
517 lastPAR[35]=500./(a2+50.)+3; // p4
518 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
519 // The 2nd max slope (peh_sb)
520 lastPAR[37]=.4*asa+3.e-9*a6; // p1
521 lastPAR[38]=.0005*a5; // p2
522 lastPAR[39]=.002*a5; // p3
523 lastPAR[40]=10.; // p4
524 // The effective pre-exponent (peh_us)
525 lastPAR[41]=.05+.005*a; // p1
526 lastPAR[42]=7.e-8/sa; // p2
527 lastPAR[43]=.8*sa; // p3
528 lastPAR[44]=.02*sa; // p4
529 lastPAR[45]=1.e8/a3; // p5
530 lastPAR[46]=3.e32/(a32+1.e32); // p6
531 // The effective slope (peh_ub)
532 lastPAR[47]=24.; // p1
533 lastPAR[48]=20./sa; // p2
534 lastPAR[49]=7.e3*a/(sa+1.); // p3
535 lastPAR[50]=900.*sa/(1.+500./a3); // p4
536 }
537 // Parameter for lowEnergyNeutrons
538 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
539 }
540 lastPAR[nLast]=pwd;
541 // and initialize the zero element of the table
542 G4double lp=lPMin; // ln(momentum)
543 G4bool memCS=onlyCS; // ??
544 onlyCS=false;
545 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
546 onlyCS=memCS;
547 lastSST[0]=theSS;
548 lastS1T[0]=theS1;
549 lastB1T[0]=theB1;
550 lastS2T[0]=theS2;
551 lastB2T[0]=theB2;
552 lastS3T[0]=theS3;
553 lastB3T[0]=theB3;
554 lastS4T[0]=theS4;
555 lastB4T[0]=theB4;
556 }
557 if(LP>ILP)
558 {
559 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
560 if(ini<0) ini=0;
561 if(ini<nPoints)
562 {
563 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
564 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
565 if(fin>=ini)
566 {
567 G4double lp=0.;
568 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
569 {
570 lp=lPMin+ip*dlnP; // ln(momentum)
571 G4bool memCS=onlyCS;
572 onlyCS=false;
573 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
574 onlyCS=memCS;
575 lastSST[ip]=theSS;
576 lastS1T[ip]=theS1;
577 lastB1T[ip]=theB1;
578 lastS2T[ip]=theS2;
579 lastB2T[ip]=theB2;
580 lastS3T[ip]=theS3;
581 lastB3T[ip]=theB3;
582 lastS4T[ip]=theS4;
583 lastB4T[ip]=theB4;
584 }
585 return lp;
586 }
587 else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
588 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
589 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
590 }
591 else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
592 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
593 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
594 }
595 } else {
596 // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
597 // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
598 // throw G4QException("G4ChipsHyperonElasticXS::GetPTables:onlyaBA implemented");
600 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
601 << ", while it is defined only for Hyperons" << G4endl;
602 G4Exception("G4ChipsHyperonElasticXS::GetPTables()", "HAD_CHPS_0000",
603 FatalException, ed);
604 }
605 return ILP;
606}
607
608// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
610{
611 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
612 static const G4double third=1./3.;
613 static const G4double fifth=1./5.;
614 static const G4double sevth=1./7.;
615 //AR-04Jun2014 if(PDG==3222 || PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
616 if(PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
617 if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetExchanT: onlyCS=1"<<G4endl;
618 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
619 G4double q2=0.;
620 if(tgZ==1 && tgN==0) // ===> p+p=p+p
621 {
622 G4double E1=lastTM*theB1;
623 G4double R1=(1.-G4Exp(-E1));
624 G4double E2=lastTM*theB2;
625 G4double R2=(1.-G4Exp(-E2*E2*E2));
626 G4double E3=lastTM*theB3;
627 G4double R3=(1.-G4Exp(-E3));
628 G4double I1=R1*theS1/theB1;
629 G4double I2=R2*theS2;
630 G4double I3=R3*theS3;
631 G4double I12=I1+I2;
632 G4double rand=(I12+I3)*G4UniformRand();
633 if (rand<I1 )
634 {
635 G4double ran=R1*G4UniformRand();
636 if(ran>1.) ran=1.;
637 q2=-G4Log(1.-ran)/theB1;
638 }
639 else if(rand<I12)
640 {
641 G4double ran=R2*G4UniformRand();
642 if(ran>1.) ran=1.;
643 q2=-G4Log(1.-ran);
644 if(q2<0.) q2=0.;
645 q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
646 }
647 else
648 {
649 G4double ran=R3*G4UniformRand();
650 if(ran>1.) ran=1.;
651 q2=-G4Log(1.-ran)/theB3;
652 }
653 }
654 else
655 {
656 G4double a=tgZ+tgN;
657 G4double E1=lastTM*(theB1+lastTM*theSS);
658 G4double R1=(1.-G4Exp(-E1));
659 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
660 G4double tm2=lastTM*lastTM;
661 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
662 if(a>6.5)E2*=tm2; // for heavy nuclei
663 G4double R2=(1.-G4Exp(-E2));
664 G4double E3=lastTM*theB3;
665 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
666 G4double R3=(1.-G4Exp(-E3));
667 G4double E4=lastTM*theB4;
668 G4double R4=(1.-G4Exp(-E4));
669 G4double I1=R1*theS1;
670 G4double I2=R2*theS2;
671 G4double I3=R3*theS3;
672 G4double I4=R4*theS4;
673 G4double I12=I1+I2;
674 G4double I13=I12+I3;
675 G4double rand=(I13+I4)*G4UniformRand();
676 if(rand<I1)
677 {
678 G4double ran=R1*G4UniformRand();
679 if(ran>1.) ran=1.;
680 q2=-G4Log(1.-ran)/theB1;
681 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
682 }
683 else if(rand<I12)
684 {
685 G4double ran=R2*G4UniformRand();
686 if(ran>1.) ran=1.;
687 q2=-G4Log(1.-ran)/theB2;
688 if(q2<0.) q2=0.;
689 if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
690 else q2=G4Pow::GetInstance()->powA(q2,fifth);
691 }
692 else if(rand<I13)
693 {
694 G4double ran=R3*G4UniformRand();
695 if(ran>1.) ran=1.;
696 q2=-G4Log(1.-ran)/theB3;
697 if(q2<0.) q2=0.;
698 if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
699 }
700 else
701 {
702 G4double ran=R4*G4UniformRand();
703 if(ran>1.) ran=1.;
704 q2=-G4Log(1.-ran)/theB4;
705 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
706 }
707 }
708 if(q2<0.) q2=0.;
709 if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QHyElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
710 if(q2>lastTM)
711 {
712 q2=lastTM;
713 }
714 return q2*GeVSQ;
715}
716
717// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
718G4double G4ChipsHyperonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
719{
720 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
721 if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetSlope: onlCS=true"<<G4endl;
722 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
723 //AR-04Jun2014 if(PDG==3222 || PDG<3000 || PDG>3334)
724 if(PDG<3000 || PDG>3334)
725 {
726 // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
727 // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
728 // throw G4QException("G4ChipsHyperonElasticXS::GetSlope: HypA are implemented");
730 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
731 << ", while it is defined only for Hyperons" << G4endl;
732 G4Exception("G4ChipsHyperonElasticXS::GetSlope()", "HAD_CHPS_0000",
733 FatalException, ed);
734 }
735 if(theB1<0.) theB1=0.;
736 if(!(theB1>=-1.||theB1<=1.)) G4cout<<"*NAN*G4QHyElasticCrossS::Getslope:"<<theB1<<G4endl;
737 return theB1/GeVSQ;
738}
739
740// Returns half max(Q2=-t) in independent units (MeV^2)
741G4double G4ChipsHyperonElasticXS::GetHMaxT()
742{
743 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
744 return lastTM*HGeVSQ;
745}
746
747// lastLP is used, so calculating tables, one need to remember and then recover lastLP
748G4double G4ChipsHyperonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
749 G4int tgN)
750{
751 //AR-04Jun2014 if(PDG==3222 || PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
752 if(PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
753
754
755 //AR-24Apr2018 Switch to allow transuranic elements
756 const G4bool isHeavyElementAllowed = true;
757 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
758 {
759 G4cout<<"*Warning*G4QHyperonElastCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
760 return 0.;
761 }
762 G4int iZ=tgZ-1; // Z index
763 if(iZ<0)
764 {
765 iZ=0; // conversion of the neutron target to the proton target
766 tgZ=1;
767 tgN=0;
768 }
769 G4double p=G4Exp(lp); // momentum
770 G4double sp=std::sqrt(p); // sqrt(p)
771 G4double p2=p*p;
772 G4double p3=p2*p;
773 G4double p4=p3*p;
774 if ( tgZ == 1 && tgN == 0 ) // Hyperon+P
775 {
776 G4double dl2=lp-lastPAR[9];
777 theSS=lastPAR[32];
778 theS1=(lastPAR[10]+lastPAR[11]*dl2*dl2)/(1.+lastPAR[12]/p4/p)+
779 (lastPAR[13]/p2+lastPAR[14]*p)/(p4+lastPAR[15]*sp);
780 theB1=lastPAR[16]*G4Pow::GetInstance()->powA(p,lastPAR[17])/(1.+lastPAR[18]/p3);
781 theS2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]*p);
782 theB2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]/sp);
783 theS3=lastPAR[25]+lastPAR[26]/(p4*p4+lastPAR[27]*p2+lastPAR[28]);
784 theB3=lastPAR[29]+lastPAR[30]/(p4+lastPAR[31]);
785 theS4=0.;
786 theB4=0.;
787 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
788 G4double dp=lp-lastPAR[4];
789 return lastPAR[0]/(lastPAR[1]+p2*(lastPAR[2]+p2))+(lastPAR[3]*dp*dp+lastPAR[5]+
790 lastPAR[6]/p2)/(1.+lastPAR[7]/sp+lastPAR[8]/p4);
791 }
792 else
793 {
794 G4double p5=p4*p;
795 G4double p6=p5*p;
796 G4double p8=p6*p2;
797 G4double p10=p8*p2;
798 G4double p12=p10*p2;
799 G4double p16=p8*p8;
800 //G4double p24=p16*p8;
801 G4double dl=lp-5.;
802 G4double a=tgZ+tgN;
803 G4double pah=G4Pow::GetInstance()->powA(p,a/2);
804 G4double pa=pah*pah;
805 G4double pa2=pa*pa;
806 if(a<6.5)
807 {
808 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
809 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
810 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
811 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
812 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
813 theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
814 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
815 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
816 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
817 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
818 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
819 }
820 else
821 {
822 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
823 lastPAR[13]/(p5+lastPAR[14]/p16);
824 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
825 lastPAR[17]/(1.+lastPAR[18]/p4);
826 theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
827 theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
828 theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
829 theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
830 lastPAR[33]/(1.+lastPAR[34]/p6);
831 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
832 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
833 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
834 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
835 }
836 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
837 G4double dlp=lp-lastPAR[5]; // ax
838 // p1 p2 p3 p4 p5
839 return (lastPAR[0]*dlp*dlp+lastPAR[1])/(1.+lastPAR[2]/p)+lastPAR[3]/(p3+lastPAR[4]);
840 }
841 return 0.;
842} // End of GetTableValues
843
844// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
845G4double G4ChipsHyperonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
846 G4double pP)
847{
848 static const G4double mLamb= G4Lambda::Lambda()->GetPDGMass()*.001; // MeV to GeV
849 static const G4double mLa2= mLamb*mLamb;
850 G4double pP2=pP*pP; // squared momentum of the projectile
851 if(tgZ || tgN>-1) // --> Hyperon-A
852 {
853 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
854
855 G4double dmt=mt+mt;
856 G4double mds=dmt*std::sqrt(pP2+mLa2)+mLa2+mt*mt; // Mondelstam mds (@@ other hyperons?)
857 return dmt*dmt*pP2/mds;
858 }
859 else
860 {
861 // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
862 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
863 // throw G4QException("G4ChipsHyperonElasticXS::GetQ2max: only HyperA implemented");
865 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
866 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
867 G4Exception("G4ChipsHyperonElasticXS::GetQ2max()", "HAD_CHPS_0000",
868 FatalException, ed);
869 return 0;
870 }
871}
#define G4_DECLARE_XS_FACTORY(cross_section)
double A(double temperature)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual void CrossSectionDescription(std::ostream &) const
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4Lambda * Lambda()
Definition: G4Lambda.cc:107
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230