Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AdjointIonIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
28#include "G4AdjointCSManager.hh"
29
31#include "G4SystemOfUnits.hh"
32#include "G4Integrator.hh"
33#include "G4TrackStatus.hh"
34#include "G4ParticleChange.hh"
35#include "G4AdjointElectron.hh"
36#include "G4AdjointProton.hh"
38#include "G4BetheBlochModel.hh"
39#include "G4BraggIonModel.hh"
40#include "G4Proton.hh"
41#include "G4GenericIon.hh"
42#include "G4NistManager.hh"
43
44////////////////////////////////////////////////////////////////////////////////
45//
47 G4VEmAdjointModel("Adjoint_IonIonisation")
48{
49
50
51 UseMatrix =true;
53 ApplyCutInRange = true;
57 use_only_bragg = false; // for the Ion ionisation using the parametrised table model the cross sections and the sample of secondaries is done
58 // as in the BraggIonModel, Therefore the use of this flag;
59
60 //The direct EM Model is taken has BetheBloch it is only used for the computation
61 // of the differential cross section.
62 //The Bragg model could be used as an alternative as it offers the same differential cross section
63
64 theBetheBlochDirectEMModel = new G4BetheBlochModel(G4GenericIon::GenericIon());
65 theBraggIonDirectEMModel = new G4BraggIonModel(G4GenericIon::GenericIon());
69 /* theDirectPrimaryPartDef =fwd_ion;
70 theAdjEquivOfDirectPrimPartDef =adj_ion;
71
72 DefineProjectileProperty();*/
73
74
75
76
77}
78////////////////////////////////////////////////////////////////////////////////
79//
81{;}
82////////////////////////////////////////////////////////////////////////////////
83//
85 G4bool IsScatProjToProjCase,
86 G4ParticleChange* fParticleChange)
87{
88 const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
89
90 //Elastic inverse scattering
91 //---------------------------------------------------------
92 G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
93 G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
94
95 if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
96 return;
97 }
98
99 //Sample secondary energy
100 //-----------------------
101 G4double projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy, IsScatProjToProjCase);
102 CorrectPostStepWeight(fParticleChange,
103 aTrack.GetWeight(),
104 adjointPrimKinEnergy,
105 projectileKinEnergy,
106 IsScatProjToProjCase); //Caution !!!this weight correction should be always applied
107
108
109 //Kinematic:
110 //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
111 // him part of its energy
112 //----------------------------------------------------------------------------------------
113
115 G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
116 G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
117
118
119
120 //Companion
121 //-----------
123 if (IsScatProjToProjCase) {
125 }
126 G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
127 G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
128
129
130 //Projectile momentum
131 //--------------------
132 G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
133 G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
134 G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
135 G4double phi =G4UniformRand()*2.*3.1415926;
136 G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
137 projectileMomentum.rotateUz(dir_parallel);
138
139
140
141 if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
142 fParticleChange->ProposeTrackStatus(fStopAndKill);
143 fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
144 //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
145 }
146 else {
147 fParticleChange->ProposeEnergy(projectileKinEnergy);
148 fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
149 }
150
151
152
153
154}
155
156////////////////////////////////////////////////////////////////////////////////
157//
159 G4double kinEnergyProj,
160 G4double kinEnergyProd,
161 G4double Z,
162 G4double A)
163{//Probably that here the Bragg Model should be also used for kinEnergyProj/nuc<2MeV
164
165
166
167 G4double dSigmadEprod=0;
168 G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
169 G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
170
171 G4double kinEnergyProjScaled = massRatio*kinEnergyProj;
172
173
174 if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
175 G4double Tmax=kinEnergyProj;
176
177 G4double E1=kinEnergyProd;
178 G4double E2=kinEnergyProd*1.000001;
179 G4double dE=(E2-E1);
180 G4double sigma1,sigma2;
181 theDirectEMModel =theBraggIonDirectEMModel;
182 if (kinEnergyProjScaled >2.*MeV && !use_only_bragg) theDirectEMModel = theBetheBlochDirectEMModel; //Bethe Bloch Model
183 sigma1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
184 sigma2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
185
186 dSigmadEprod=(sigma1-sigma2)/dE;
187
188 //G4double chargeSqRatio = currentModel->GetChargeSquareRatio(theDirectPrimaryPartDef,currentMaterial,E);
189
190
191
192 if (dSigmadEprod>1.) {
193 G4cout<<"sigma1 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma1<<G4endl;
194 G4cout<<"sigma2 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma2<<G4endl;
195 G4cout<<"dsigma "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<dSigmadEprod<<G4endl;
196
197 }
198
199
200
201
202
203
204 if (theDirectEMModel == theBetheBlochDirectEMModel ){
205 //correction of differential cross section at high energy to correct for the suppression of particle at secondary at high
206 //energy used in the Bethe Bloch Model. This correction consist to multiply by g the probability function used
207 //to test the rejection of a secondary
208 //-------------------------
209
210 //Source code taken from G4BetheBlochModel::SampleSecondaries
211
212 G4double deltaKinEnergy = kinEnergyProd;
213
214 //Part of the taken code
215 //----------------------
216
217
218
219 // projectile formfactor - suppresion of high energy
220 // delta-electron production at high energy
221
222
223 G4double x = formfact*deltaKinEnergy;
224 if(x > 1.e-6) {
225 G4double totEnergy = kinEnergyProj + mass;
226 G4double etot2 = totEnergy*totEnergy;
227 G4double beta2 = kinEnergyProj*(kinEnergyProj + 2.0*mass)/etot2;
228 G4double f;
229 G4double f1 = 0.0;
230 f = 1.0 - beta2*deltaKinEnergy/Tmax;
231 if( 0.5 == spin ) {
232 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
233 f += f1;
234 }
235 G4double x1 = 1.0 + x;
236 G4double gg = 1.0/(x1*x1);
237 if( 0.5 == spin ) {
238 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
239 gg *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
240 }
241 if(gg > 1.0) {
242 G4cout << "### G4BetheBlochModel in Adjoint Sim WARNING: gg= " << gg
243 << G4endl;
244 gg=1.;
245 }
246 //G4cout<<"gg"<<gg<<G4endl;
247 dSigmadEprod*=gg;
248 }
249 }
250
251 }
252
253 return dSigmadEprod;
254}
255//////////////////////////////////////////////////////////////////////////////////////////////
256//
258{ theDirectPrimaryPartDef =fwd_ion;
260
261 DefineProjectileProperty();
262}
263//////////////////////////////////////////////////////////////////////////////////////////////
264//
266 G4double adjointPrimKinEnergy, G4double projectileKinEnergy,G4bool )
267{
268 //It is needed because the direct cross section used to compute the differential cross section is not the one used in
269 // the direct model where the GenericIon stuff is considered with correction of effective charge. In the direct model the samnepl of secondaries does
270 // not reflect the integral cross section. The integral fwd cross section that we used to compute the differential CS
271 // match the sample of secondaries in the forward case despite the fact that its is not the same total CS than in the FWD case. For this reasion an extra
272 // weight correction is needed at the end.
273
274
275 G4double new_weight=old_weight;
276
277 //the correction of CS due to the problem explained above
278 G4double kinEnergyProjScaled = massRatio*projectileKinEnergy;
279 theDirectEMModel =theBraggIonDirectEMModel;
280 if (kinEnergyProjScaled >2.*MeV && !use_only_bragg) theDirectEMModel = theBetheBlochDirectEMModel; //Bethe Bloch Model
282 G4double chargeSqRatio =1.;
283 if (chargeSquare>1.) chargeSqRatio = theDirectEMModel->GetChargeSquareRatio(theDirectPrimaryPartDef,currentMaterial,projectileKinEnergy);
284 G4double CorrectFwdCS = chargeSqRatio*theDirectEMModel->ComputeCrossSectionPerAtom(G4GenericIon::GenericIon(),kinEnergyProjScaled,1,1 ,currentTcutForDirectSecond,1.e20);
285 if (UsedFwdCS >0) new_weight*= CorrectFwdCS/UsedFwdCS;//May be some check is needed if UsedFwdCS ==0 probably that then we should avoid a secondary to be produced,
286
287
288 //additional CS crorrection needed for cross section biasing in general.
289 //May be wrong for ions!!! Most of the time not used!
290 G4double w_corr =1./CS_biasing_factor;
292 new_weight*=w_corr;
293
294 new_weight*=projectileKinEnergy/adjointPrimKinEnergy;
295
296 fParticleChange->SetParentWeightByProcess(false);
297 fParticleChange->SetSecondaryWeightByProcess(false);
298 fParticleChange->ProposeParentWeight(new_weight);
299}
300
301
302//////////////////////////////////////////////////////////////////////////////////////////////
303//
304void G4AdjointIonIonisationModel::DefineProjectileProperty()
305{
306 //Slightly modified code taken from G4BetheBlochModel::SetParticle
307 //------------------------------------------------
309 if (theDirectPrimaryPartDef->GetParticleType() == "nucleus" &&
310 pname != "deuteron" && pname != "triton") {
311 isIon = true;
312 }
313
315 massRatio= G4GenericIon::GenericIon()->GetPDGMass()/mass;
316 mass_ratio_projectile = massRatio;
319 chargeSquare = q*q;
320 ratio = electron_mass_c2/mass;
321 ratio2 = ratio*ratio;
322 one_plus_ratio_2=(1+ratio)*(1+ratio);
323 one_minus_ratio_2=(1-ratio)*(1-ratio);
325 *mass/(0.5*eplus*hbar_Planck*c_squared);
326 magMoment2 = magmom*magmom - 1.0;
327 formfact = 0.0;
329 G4double x = 0.8426*GeV;
330 if(spin == 0.0 && mass < GeV) {x = 0.736*GeV;}
331 else if(mass > GeV) {
332 x /= G4NistManager::Instance()->GetZ13(mass/proton_mass_c2);
333 // tlimit = 51.2*GeV*A13[iz]*A13[iz];
334 }
335 formfact = 2.0*electron_mass_c2/(x*x);
336 tlimit = 2.0/formfact;
337 }
338}
339
340
341//////////////////////////////////////////////////////////////////////////////
342//
344{
345 G4double Tmax=PrimAdjEnergy*one_plus_ratio_2/(one_minus_ratio_2-2.*ratio*PrimAdjEnergy/mass);
346 return Tmax;
347}
348//////////////////////////////////////////////////////////////////////////////
349//
351{ return PrimAdjEnergy+Tcut;
352}
353//////////////////////////////////////////////////////////////////////////////
354//
356{ return HighEnergyLimit;
357}
358//////////////////////////////////////////////////////////////////////////////
359//
361{ G4double Tmin= (2*PrimAdjEnergy-4*mass + std::sqrt(4.*PrimAdjEnergy*PrimAdjEnergy +16.*mass*mass + 8.*PrimAdjEnergy*mass*(1/ratio +ratio)))/4.;
362 return Tmin;
363}
double A(double temperature)
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
G4double GetPostStepWeightCorrection()
static G4AdjointCSManager * GetAdjointCSManager()
static G4AdjointElectron * AdjointElectron()
virtual G4double GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
virtual G4double GetSecondAdjEnergyMaxForProdToProjCase(G4double PrimAdjEnergy)
virtual G4double GetSecondAdjEnergyMaxForScatProjToProjCase(G4double PrimAdjEnergy)
virtual G4double DiffCrossSectionPerAtomPrimToSecond(G4double kinEnergyProj, G4double kinEnergyProd, G4double Z, G4double A=0.)
virtual void SampleSecondaries(const G4Track &aTrack, G4bool IsScatProjToProjCase, G4ParticleChange *fParticleChange)
virtual G4double GetSecondAdjEnergyMinForScatProjToProjCase(G4double PrimAdjEnergy, G4double Tcut=0)
void SetIon(G4ParticleDefinition *adj_ion, G4ParticleDefinition *fwd_ion)
virtual void CorrectPostStepWeight(G4ParticleChange *fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double GetTotalMomentum() const
static G4GenericIon * GenericIon()
Definition: G4GenericIon.cc:92
G4double GetZ13(G4double Z) const
static G4NistManager * Instance()
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double GetPDGMagneticMoment() const
const G4String & GetParticleType() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4double GetWeight() const
const G4DynamicParticle * GetDynamicParticle() const
G4VEmModel * theDirectEMModel
G4ParticleDefinition * theDirectPrimaryPartDef
G4double SampleAdjSecEnergyFromCSMatrix(size_t MatrixIndex, G4double prim_energy, G4bool IsScatProjToProjCase)
G4Material * currentMaterial
G4bool UseOnlyOneMatrixForAllElements
G4double currentTcutForDirectSecond
G4ParticleDefinition * theAdjEquivOfDirectSecondPartDef
G4ParticleDefinition * theAdjEquivOfDirectPrimPartDef
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.cc:359
virtual G4double GetChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
Definition: G4VEmModel.cc:391
void ProposeTrackStatus(G4TrackStatus status)
void SetSecondaryWeightByProcess(G4bool)
void SetParentWeightByProcess(G4bool)
void ProposeParentWeight(G4double finalWeight)