Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Polyhedron.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
28#include "G4Polyhedron.hh"
29
31 fNumberOfRotationStepsAtTimeOfCreation (fNumberOfRotationSteps)
32{}
33
35
37 : HepPolyhedron(from)
38{
39 fNumberOfRotationStepsAtTimeOfCreation =
41}
42
44 G4Polyhedron (HepPolyhedronBox (dx, dy, dz)) {}
45
47
49 G4double Rmn2, G4double Rmx2, G4double Dz):
50 G4Polyhedron (HepPolyhedronCone (Rmn1, Rmx1, Rmn2, Rmx2, Dz)) {}
51
53
55 G4double Rmn2, G4double Rmx2, G4double Dz,
56 G4double Phi1, G4double Dphi):
57 G4Polyhedron (HepPolyhedronCons (Rmn1, Rmx1, Rmn2, Rmx2, Dz, Phi1, Dphi)) {}
58
60
62 G4double Alpha, G4double Theta,
63 G4double Phi):
64 G4Polyhedron (HepPolyhedronPara (Dx, Dy, Dz, Alpha, Theta, Phi)) {}
65
67
69 const G4double *z,
70 const G4double *rmin,
71 const G4double *rmax):
72 G4Polyhedron (HepPolyhedronPcon (phi, dphi, nz, z, rmin, rmax)) {}
73
75
77 G4int nz,
78 const G4double *z,
79 const G4double *rmin,
80 const G4double *rmax):
81 G4Polyhedron (HepPolyhedronPgon (phi, dphi, npdv, nz, z, rmin, rmax)) {}
82
84
86 G4double phi, G4double dphi,
87 G4double the, G4double dthe):
88 G4Polyhedron (HepPolyhedronSphere (rmin, rmax, phi, dphi, the, dthe)) {}
89
91
93 const G4double p1[3],
94 const G4double p2[3],
95 const G4double p3[3]):
96 G4Polyhedron (HepPolyhedronTet (p0, p1, p2, p3)) {}
97
99
101 G4double rtor,
102 G4double phi, G4double dphi):
103 G4Polyhedron (HepPolyhedronTorus (rmin, rmax, rtor, phi, dphi)) {}
104
106
108 G4double Dy1,
109 G4double Dx1, G4double Dx2, G4double Alp1,
110 G4double Dy2,
111 G4double Dx3, G4double Dx4, G4double Alp2):
112 G4Polyhedron (HepPolyhedronTrap (Dz, Theta, Phi, Dy1, Dx1, Dx2, Alp1,
113 Dy2, Dx3, Dx4, Alp2)) {}
114
116
118 G4double Dy, G4double Dz):
119 G4Polyhedron (HepPolyhedronTrd1 (Dx1, Dx2, Dy, Dz)) {}
120
122
124 G4double Dy1, G4double Dy2, G4double Dz):
125 G4Polyhedron (HepPolyhedronTrd2 (Dx1, Dx2, Dy1, Dy2, Dz)) {}
126
128
130 G4Polyhedron (HepPolyhedronTube (Rmin, Rmax, Dz)) {}
131
133
135 G4double Phi1, G4double Dphi):
136 G4Polyhedron (HepPolyhedronTubs (Rmin, Rmax, Dz, Phi1, Dphi)) {}
137
139
141 G4double dz, G4double sPhi,
142 G4double dPhi):
143 G4Polyhedron (HepPolyhedronParaboloid(r1, r2, dz, sPhi, dPhi)) {}
144
146
148 G4double tan2, G4double halfZ):
149 G4Polyhedron (HepPolyhedronHype(r1, r2, tan1, tan2, halfZ)) {}
150
152
154 G4double cz,
155 G4double zCut1, G4double zCut2):
156 G4Polyhedron (HepPolyhedronEllipsoid (ax, by, cz, zCut1, zCut2)) {}
157
159
161 G4double ay,
162 G4double h,
163 G4double zCut1):
164 G4Polyhedron (HepPolyhedronEllipticalCone (ax, ay, h, zCut1)) {}
165
167
169 G4double h,
170 G4double r):
172
174
175std::ostream& operator<<(std::ostream& os, const G4Polyhedron& polyhedron)
176{
177 os << "G4Polyhedron: "
178 << (const G4Visible&)polyhedron << '\n'
179 << (const HepPolyhedron&)polyhedron;
180 return os;
181}
std::ostream & operator<<(std::ostream &os, const G4Polyhedron &polyhedron)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4PolyhedronBox(G4double dx, G4double dy, G4double dz)
Definition: G4Polyhedron.cc:43
virtual ~G4PolyhedronBox()
Definition: G4Polyhedron.cc:46
G4PolyhedronCone(G4double Rmn1, G4double Rmx1, G4double Rmn2, G4double Rmx2, G4double Dz)
Definition: G4Polyhedron.cc:48
virtual ~G4PolyhedronCone()
Definition: G4Polyhedron.cc:52
virtual ~G4PolyhedronCons()
Definition: G4Polyhedron.cc:59
G4PolyhedronCons(G4double Rmn1, G4double Rmx1, G4double Rmn2, G4double Rmx2, G4double Dz, G4double Phi1, G4double Dphi)
Definition: G4Polyhedron.cc:54
virtual ~G4PolyhedronEllipsoid()
G4PolyhedronEllipsoid(G4double dx, G4double dy, G4double dz, G4double zcut1, G4double zcut2)
G4PolyhedronEllipticalCone(G4double dx, G4double dy, G4double z, G4double zcut1)
virtual ~G4PolyhedronHype()
G4PolyhedronHype(G4double r1, G4double r2, G4double tan1, G4double tan2, G4double halfZ)
G4PolyhedronHyperbolicMirror(G4double a, G4double h, G4double r)
virtual ~G4PolyhedronPara()
Definition: G4Polyhedron.cc:66
G4PolyhedronPara(G4double Dx, G4double Dy, G4double Dz, G4double Alpha, G4double Theta, G4double Phi)
Definition: G4Polyhedron.cc:61
G4PolyhedronParaboloid(G4double r1, G4double r2, G4double dz, G4double sPhi, G4double dPhi)
virtual ~G4PolyhedronParaboloid()
G4PolyhedronPcon(G4double phi, G4double dphi, G4int nz, const G4double *z, const G4double *rmin, const G4double *rmax)
Definition: G4Polyhedron.cc:68
virtual ~G4PolyhedronPcon()
Definition: G4Polyhedron.cc:74
virtual ~G4PolyhedronPgon()
Definition: G4Polyhedron.cc:83
G4PolyhedronPgon(G4double phi, G4double dphi, G4int npdv, G4int nz, const G4double *z, const G4double *rmin, const G4double *rmax)
Definition: G4Polyhedron.cc:76
G4PolyhedronSphere(G4double rmin, G4double rmax, G4double phi, G4double dphi, G4double the, G4double dthe)
Definition: G4Polyhedron.cc:85
virtual ~G4PolyhedronSphere()
Definition: G4Polyhedron.cc:90
G4PolyhedronTet(const G4double p0[3], const G4double p1[3], const G4double p2[3], const G4double p3[3])
Definition: G4Polyhedron.cc:92
virtual ~G4PolyhedronTet()
Definition: G4Polyhedron.cc:98
G4PolyhedronTorus(G4double rmin, G4double rmax, G4double rtor, G4double phi, G4double dphi)
virtual ~G4PolyhedronTorus()
G4PolyhedronTrap(G4double Dz, G4double Theta, G4double Phi, G4double Dy1, G4double Dx1, G4double Dx2, G4double Alp1, G4double Dy2, G4double Dx3, G4double Dx4, G4double Alp2)
virtual ~G4PolyhedronTrap()
G4PolyhedronTrd1(G4double Dx1, G4double Dx2, G4double Dy, G4double Dz)
virtual ~G4PolyhedronTrd1()
G4PolyhedronTrd2(G4double Dx1, G4double Dx2, G4double Dy1, G4double Dy2, G4double Dz)
virtual ~G4PolyhedronTrd2()
G4PolyhedronTube(G4double Rmin, G4double Rmax, G4double Dz)
virtual ~G4PolyhedronTube()
G4PolyhedronTubs(G4double Rmin, G4double Rmax, G4double Dz, G4double Phi1, G4double Dphi)
virtual ~G4PolyhedronTubs()
virtual ~G4Polyhedron()
Definition: G4Polyhedron.cc:34
static G4ThreadLocal G4int fNumberOfRotationSteps