Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
csz_inflate.cc
Go to the documentation of this file.
1
2#include <stdio.h>
3#include <stdlib.h>
4#include <string.h>
5
6/*G.Barrand : static int qflag = 0; */
7
8/* inflate.c -- put in the public domain by Mark Adler
9 version c14o, 23 August 1994 */
10
11
12/* You can do whatever you like with this source file, though I would
13 prefer that if you modify it and redistribute it that you include
14 comments to that effect with your name and the date. Thank you.
15
16 History:
17 vers date who what
18 ---- --------- -------------- ------------------------------------
19 a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
20 b1 21 Mar 92 M. Adler first version with partial lookup tables
21 b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
22 b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
23 b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
24 is the responsibility of unzip.h--also
25 changed name to slide[]), so needs diffs
26 for unzip.c and unzip.h (this allows
27 compiling in the small model on MSDOS);
28 fixed cast of q in huft_build();
29 b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
30 b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
31 bug in inflate_fixed().
32 c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
33 changed BMAX to 16 for explode. Removed
34 OUTB usage, and replaced it with flush()--
35 this was a 20% speed improvement! Added
36 an explode.c (to replace unimplod.c) that
37 uses the huft routines here. Removed
38 register union.
39 c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
40 c3 10 Apr 92 M. Adler reduced memory of code tables made by
41 huft_build significantly (factor of two to
42 three).
43 c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
44 worked around a Turbo C optimization bug.
45 c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
46 the 32K window size for specialized
47 applications.
48 c6 31 May 92 M. Adler added some typecasts to eliminate warnings
49 c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
50 c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
51 c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
52 c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
53 removed old inflate, renamed inflate_entry
54 to inflate, added Mark's fix to a comment.
55 c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
56 c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
57 tables, and removed assumption that EOB is
58 the longest code (bad assumption).
59 c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
60 c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
61 outputs one zero length code for an empty
62 distance tree).
63 c14 12 Mar 93 M. Adler made inflate.c standalone with the
64 introduction of inflate.h.
65 c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
66 c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
67 to static for Amiga.
68 c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
69 c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
70 c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
71 conditional; added inflate_free().
72 c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
73 c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
74 c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
75 G. Roelofs check NEXTBYTE macro for EOF.
76 c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
77 EOF check.
78 c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
79 c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
80 to avoid bug in Encore compiler.
81 c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
82 inflate_codes() (define ASM_INFLATECODES)
83 c14n 22 Jul 94 G. Roelofs changed fprintf to FPRINTF for DLL versions
84 c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
85 G. Roelofs added another typecast to avoid MSC warning
86 */
87
88
89/*
90 Inflate deflated (PKZIP's method 8 compressed) data. The compression
91 method searches for as much of the current string of bytes (up to a
92 length of 258) in the previous 32K bytes. If it doesn't find any
93 matches (of at least length 3), it codes the next byte. Otherwise, it
94 codes the length of the matched string and its distance backwards from
95 the current position. There is a single Huffman code that codes both
96 single bytes (called "literals") and match lengths. A second Huffman
97 code codes the distance information, which follows a length code. Each
98 length or distance code actually represents a base value and a number
99 of "extra" (sometimes zero) bits to get to add to the base value. At
100 the end of each deflated block is a special end-of-block (EOB) literal/
101 length code. The decoding process is basically: get a literal/length
102 code; if EOB then done; if a literal, emit the decoded byte; if a
103 length then get the distance and emit the referred-to bytes from the
104 sliding window of previously emitted data.
105
106 There are (currently) three kinds of inflate blocks: stored, fixed, and
107 dynamic. The compressor outputs a chunk of data at a time and decides
108 which method to use on a chunk-by-chunk basis. A chunk might typically
109 be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
110 "stored" method is used. In this case, the bytes are simply stored as
111 is, eight bits per byte, with none of the above coding. The bytes are
112 preceded by a count, since there is no longer an EOB code.
113
114 If the data is compressible, then either the fixed or dynamic methods
115 are used. In the dynamic method, the compressed data is preceded by
116 an encoding of the literal/length and distance Huffman codes that are
117 to be used to decode this block. The representation is itself Huffman
118 coded, and so is preceded by a description of that code. These code
119 descriptions take up a little space, and so for small blocks, there is
120 a predefined set of codes, called the fixed codes. The fixed method is
121 used if the block ends up smaller that way (usually for quite small
122 chunks); otherwise the dynamic method is used. In the latter case, the
123 codes are customized to the probabilities in the current block and so
124 can code it much better than the pre-determined fixed codes can.
125
126 The Huffman codes themselves are decoded using a mutli-level table
127 lookup, in order to maximize the speed of decoding plus the speed of
128 building the decoding tables. See the comments below that precede the
129 lbits and dbits tuning parameters.
130 */
131
132
133/*
134 Notes beyond the 1.93a appnote.txt:
135
136 1. Distance pointers never point before the beginning of the output
137 stream.
138 2. Distance pointers can point back across blocks, up to 32k away.
139 3. There is an implied maximum of 7 bits for the bit length table and
140 15 bits for the actual data.
141 4. If only one code exists, then it is encoded using one bit. (Zero
142 would be more efficient, but perhaps a little confusing.) If two
143 codes exist, they are coded using one bit each (0 and 1).
144 5. There is no way of sending zero distance codes--a dummy must be
145 sent if there are none. (History: a pre 2.0 version of PKZIP would
146 store blocks with no distance codes, but this was discovered to be
147 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
148 zero distance codes, which is sent as one code of zero bits in
149 length.
150 6. There are up to 286 literal/length codes. Code 256 represents the
151 end-of-block. Note however that the static length tree defines
152 288 codes just to fill out the Huffman codes. Codes 286 and 287
153 cannot be used though, since there is no length base or extra bits
154 defined for them. Similarily, there are up to 30 distance codes.
155 However, static trees define 32 codes (all 5 bits) to fill out the
156 Huffman codes, but the last two had better not show up in the data.
157 7. Unzip can check dynamic Huffman blocks for complete code sets.
158 The exception is that a single code would not be complete (see #4).
159 8. The five bits following the block type is really the number of
160 literal codes sent minus 257.
161 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
162 (1+6+6). Therefore, to output three times the length, you output
163 three codes (1+1+1), whereas to output four times the same length,
164 you only need two codes (1+3). Hmm.
165 10. In the tree reconstruction algorithm, Code = Code + Increment
166 only if BitLength(i) is not zero. (Pretty obvious.)
167 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
168 12. Note: length code 284 can represent 227-258, but length code 285
169 really is 258. The last length deserves its own, short code
170 since it gets used a lot in very redundant files. The length
171 258 is special since 258 - 3 (the min match length) is 255.
172 13. The literal/length and distance code bit lengths are read as a
173 single stream of lengths. It is possible (and advantageous) for
174 a repeat code (16, 17, or 18) to go across the boundary between
175 the two sets of lengths.
176 */
177
178
179#if 0
180/*G.Barrand #define PKZIP_BUG_WORKAROUND */ /* PKZIP 1.93a problem--live with it */
181#endif
182
183/*
184 inflate.h must supply the uch slide[WSIZE] array and the NEXTBYTE,
185 FLUSH() and memzero macros. If the window size is not 32K, it
186 should also define WSIZE. If INFMOD is defined, it can include
187 compiled functions to support the NEXTBYTE and/or FLUSH() macros.
188 There are defaults for NEXTBYTE and FLUSH() below for use as
189 examples of what those functions need to do. Normally, you would
190 also want FLUSH() to compute a crc on the data. inflate.h also
191 needs to provide these typedefs:
192
193 typedef unsigned char uch;
194 typedef unsigned short ush;
195 typedef unsigned long ulg;
196
197 This module uses the external functions malloc() and free() (and
198 probably memset() or bzero() in the memzero() macro). Their
199 prototypes are normally found in <string.h> and <stdlib.h>.
200 */
201/*G.Barrand
202#define INFMOD
203#if 0
204#include "Inflate.h"
205#endif
206*/
207
208typedef char boolean;
209typedef unsigned char uch; /* code assumes unsigned bytes; these type- */
210typedef unsigned short ush; /* defs replace byte/UWORD/ULONG (which are */
211typedef unsigned long ulg; /* predefined on some systems) & match zip */
212
213#ifndef WSIZE /* default is 32K */
214# define WSIZE 0x8000 /* window size--must be a power of two, and at least */
215#endif /* 32K for zip's deflate method */
216
217#ifndef NEXTBYTE /* default is to simply get a byte from stdin */
218# define NEXTBYTE csz__ReadByte()
219#endif
220
221#ifndef FPRINTF
222# define FPRINTF fprintf
223#endif
224
225#ifndef FLUSH /* default is to simply write the buffer to stdout */
226# define FLUSH(n) csz__WriteData(n) /* return value not used */
227#endif
228/* Warning: the fwrite above might not work on 16-bit compilers, since
229 0x8000 might be interpreted as -32,768 by the library function. */
230
231#ifndef Trace
232# ifdef DEBUG
233# define Trace(x) fprintf x
234# else
235# define Trace(x)
236# endif
237#endif
238
239
240/* Huffman code lookup table entry--this entry is four bytes for machines
241 that have 16-bit pointers (e.g. PC's in the small or medium model).
242 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
243 means that v is a literal, 16 < e < 32 means that v is a pointer to
244 the next table, which codes e - 16 bits, and lastly e == 99 indicates
245 an unused code. If a code with e == 99 is looked up, this implies an
246 error in the data. */
247struct huft {
248 uch e; /* number of extra bits or operation */
249 uch b; /* number of bits in this code or subcode */
250 union {
251 ush n; /* literal, length base, or distance base */
252 struct huft *t; /* pointer to next level of table */
253 } v;
254};
255
256
257/* Function prototypes */
258/*G.Barrand
259#ifndef OF
260# ifdef __STDC__
261# define OF(a) a
262# else
263# define OF(a) ()
264# endif
265#endif
266*/
267int csz__huft_build(unsigned *, unsigned, unsigned, ush *, ush *,
268 struct huft **, int *);
269int csz__huft_free(struct huft *);
270int csz__Inflate_codes(struct huft *, struct huft *, int, int);
271int csz__Inflate_stored(void);
272int csz__Inflate_fixed(void);
273int csz__Inflate_dynamic(void);
274int csz__Inflate_block(int *);
275#ifdef __cplusplus /*G.Barrand*/
276extern "C" {
277#endif
278int csz__Inflate(void);
279int csz__Inflate_free(void);
280#ifdef __cplusplus /*G.Barrand*/
281}
282#endif
283
284/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
285 stream to find repeated byte strings. This is implemented here as a
286 circular buffer. The index is updated simply by incrementing and then
287 and'ing with 0x7fff (32K-1). */
288/* It is left to other modules to supply the 32K area. It is assumed
289 to be usable as if it were declared "uch slide[32768];" or as just
290 "uch *slide;" and then malloc'ed in the latter case. The definition
291 must be in unzip.h, included above. */
292
293static uch csz__slide [32768];
294static unsigned wp; /* current position in slide */
295
296
297/* Tables for deflate from PKZIP's appnote.txt. */
298static unsigned border[] = { /* Order of the bit length code lengths */
299 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
300static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
301 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
302 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
303 /* note: see note #13 above about the 258 in this list. */
304static ush cplext[] = { /* Extra bits for literal codes 257..285 */
305 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
306 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
307static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
308 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
309 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
310 8193, 12289, 16385, 24577};
311static ush cpdext[] = { /* Extra bits for distance codes */
312 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
313 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
314 12, 12, 13, 13};
315
316/* And'ing with mask[n] masks the lower n bits */
317static ush mask[] = {
318 0x0000,
319 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
320 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
321};
322
323
324/* Macros for inflate() bit peeking and grabbing.
325 The usage is:
326
327 NEEDBITS(j)
328 x = b & mask[j];
329 DUMPBITS(j)
330
331 where NEEDBITS makes sure that b has at least j bits in it, and
332 DUMPBITS removes the bits from b. The macros use the variable k
333 for the number of bits in b. Normally, b and k are register
334 variables for speed, and are initialized at the begining of a
335 routine that uses these macros from a global bit buffer and count.
336
337 In order to not ask for more bits than there are in the compressed
338 stream, the Huffman tables are constructed to only ask for just
339 enough bits to make up the end-of-block code (value 256). Then no
340 bytes need to be "returned" to the buffer at the end of the last
341 block. See the huft_build() routine.
342 */
343
344static ulg bb; /* bit buffer */
345static unsigned bk; /* bits in bit buffer */
346static uch *ibufptr,*obufptr;
347static long ibufcnt, obufcnt;
348
349#define CHECK_EOF
350
351#ifndef CHECK_EOF
352static int csz__ReadByte();
353#endif
354static void csz__WriteData(int);
355
356#ifndef CHECK_EOF
357# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
358#else
359# define NEEDBITS(n) {while(k<(n)){if(ibufcnt-- <= 0)return 1;b|=((ulg) *ibufptr++)<<k;k+=8;}}
360#endif /* Piet Plomp: change "return 1" to "break" */
361
362#define DUMPBITS(n) {b>>=(n);k-=(n);}
363
364
365/*
366 Huffman code decoding is performed using a multi-level table lookup.
367 The fastest way to decode is to simply build a lookup table whose
368 size is determined by the longest code. However, the time it takes
369 to build this table can also be a factor if the data being decoded
370 is not very long. The most common codes are necessarily the
371 shortest codes, so those codes dominate the decoding time, and hence
372 the speed. The idea is you can have a shorter table that decodes the
373 shorter, more probable codes, and then point to subsidiary tables for
374 the longer codes. The time it costs to decode the longer codes is
375 then traded against the time it takes to make longer tables.
376
377 This results of this trade are in the variables lbits and dbits
378 below. lbits is the number of bits the first level table for literal/
379 length codes can decode in one step, and dbits is the same thing for
380 the distance codes. Subsequent tables are also less than or equal to
381 those sizes. These values may be adjusted either when all of the
382 codes are shorter than that, in which case the longest code length in
383 bits is used, or when the shortest code is *longer* than the requested
384 table size, in which case the length of the shortest code in bits is
385 used.
386
387 There are two different values for the two tables, since they code a
388 different number of possibilities each. The literal/length table
389 codes 286 possible values, or in a flat code, a little over eight
390 bits. The distance table codes 30 possible values, or a little less
391 than five bits, flat. The optimum values for speed end up being
392 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
393 The optimum values may differ though from machine to machine, and
394 possibly even between compilers. Your mileage may vary.
395 */
396
397
398static int lbits = 9; /* bits in base literal/length lookup table */
399static int dbits = 6; /* bits in base distance lookup table */
400
401
402/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
403#define BMAX 16 /* maximum bit length of any code (16 for explode) */
404#define N_MAX 288 /* maximum number of codes in any set */
405
406
407static unsigned hufts; /* track memory usage */
408
409
410int csz__huft_build(unsigned *b, unsigned n, unsigned s, ush *d, ush *e, struct huft **t, int *m)
411/* unsigned *b; code lengths in bits (all assumed <= BMAX) */
412/* unsigned n; number of codes (assumed <= N_MAX) */
413/* unsigned s; number of simple-valued codes (0..s-1) */
414/* ush *d; list of base values for non-simple codes */
415/* ush *e; list of extra bits for non-simple codes */
416/* struct huft **t; result: starting table */
417/* int *m; maximum lookup bits, returns actual */
418/* Given a list of code lengths and a maximum table size, make a set of
419 tables to decode that set of codes. Return zero on success, one if
420 the given code set is incomplete (the tables are still built in this
421 case), two if the input is invalid (all zero length codes or an
422 oversubscribed set of lengths), and three if not enough memory.
423 The code with value 256 is special, and the tables are constructed
424 so that no bits beyond that code are fetched when that code is
425 decoded. */
426{
427 unsigned a; /* counter for codes of length k */
428 unsigned c[BMAX+1]; /* bit length count table */
429 unsigned el; /* length of EOB code (value 256) */
430 unsigned f; /* i repeats in table every f entries */
431 int g; /* maximum code length */
432 int h; /* table level */
433 /*G.Barrand : comment out register keyword.*/
434 /*register*/ unsigned i; /* counter, current code */
435 /*register*/ unsigned j; /* counter */
436 /*register*/ int k; /* number of bits in current code */
437 int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
438 int *l = lx+1; /* stack of bits per table */
439 /*register*/ unsigned *p; /* pointer into c[], b[], or v[] */
440 /*register*/ struct huft *q; /* points to current table */
441 struct huft r; /* table entry for structure assignment */
442 struct huft *u[BMAX]; /* table stack */
443 static unsigned v[N_MAX]; /* values in order of bit length */
444 /*register*/ int w; /* bits before this table == (l * h) */
445 unsigned x[BMAX+1]; /* bit offsets, then code stack */
446 unsigned *xp; /* pointer into x */
447 int y; /* number of dummy codes added */
448 unsigned z; /* number of entries in current table */
449
450
451 /* Generate counts for each bit length */
452 el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
453 memset((char *)c,0,sizeof(c));
454 p = b; i = n;
455 do {
456 c[*p]++; p++; /* assume all entries <= BMAX */
457 } while (--i);
458 if (c[0] == n) /* null input--all zero length codes */
459 {
460 *t = (struct huft *)NULL;
461 *m = 0;
462 return 0;
463 }
464
465
466 /* Find minimum and maximum length, bound *m by those */
467 for (j = 1; j <= BMAX; j++)
468 if (c[j])
469 break;
470 k = j; /* minimum code length */
471 if ((unsigned)*m < j)
472 *m = j;
473 for (i = BMAX; i; i--)
474 if (c[i])
475 break;
476 g = i; /* maximum code length */
477 if ((unsigned)*m > i)
478 *m = i;
479
480
481 /* Adjust last length count to fill out codes, if needed */
482 for (y = 1 << j; j < i; j++, y <<= 1)
483 if ((y -= c[j]) < 0)
484 return 2; /* bad input: more codes than bits */
485 if ((y -= c[i]) < 0)
486 return 2;
487 c[i] += y;
488
489
490 /* Generate starting offsets into the value table for each length */
491 x[1] = j = 0;
492 p = c + 1; xp = x + 2;
493 while (--i) { /* note that i == g from above */
494 *xp++ = (j += *p++);
495 }
496
497
498 /* Make a table of values in order of bit lengths */
499 p = b; i = 0;
500 do {
501 if ((j = *p++) != 0)
502 v[x[j]++] = i;
503 } while (++i < n);
504
505
506 /* Generate the Huffman codes and for each, make the table entries */
507 x[0] = i = 0; /* first Huffman code is zero */
508 p = v; /* grab values in bit order */
509 h = -1; /* no tables yet--level -1 */
510 w = l[-1] = 0; /* no bits decoded yet */
511 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
512 q = (struct huft *)NULL; /* ditto */
513 z = 0; /* ditto */
514
515 /* go through the bit lengths (k already is bits in shortest code) */
516 for (; k <= g; k++)
517 {
518 a = c[k];
519 while (a--)
520 {
521 /* here i is the Huffman code of length k bits for value *p */
522 /* make tables up to required level */
523 while (k > w + l[h])
524 {
525 w += l[h++]; /* add bits already decoded */
526
527 /* compute minimum size table less than or equal to *m bits */
528 z = (z = g - w) > (unsigned)*m ? (unsigned) *m : z; /* upper limit */
529 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
530 { /* too few codes for k-w bit table */
531 f -= a + 1; /* deduct codes from patterns left */
532 xp = c + k;
533 while (++j < z) /* try smaller tables up to z bits */
534 {
535 if ((f <<= 1) <= *++xp)
536 break; /* enough codes to use up j bits */
537 f -= *xp; /* else deduct codes from patterns */
538 }
539 }
540 if ((unsigned)w + j > el && (unsigned)w < el)
541 j = el - w; /* make EOB code end at table */
542 z = 1 << j; /* table entries for j-bit table */
543 l[h] = j; /* set table size in stack */
544
545 /* allocate and link in new table */
546 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
547 (struct huft *)NULL)
548 {
549 if (h)
550 csz__huft_free(u[0]);
551 return 3; /* not enough memory */
552 }
553 hufts += z + 1; /* track memory usage */
554 *t = q + 1; /* link to list for huft_free() */
555 *(t = &(q->v.t)) = (struct huft *)NULL;
556 u[h] = ++q; /* table starts after link */
557
558 /* connect to last table, if there is one */
559 if (h)
560 {
561 x[h] = i; /* save pattern for backing up */
562 r.b = (uch)l[h-1]; /* bits to dump before this table */
563 r.e = (uch)(16 + j); /* bits in this table */
564 r.v.t = q; /* pointer to this table */
565 j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
566 u[h-1][j] = r; /* connect to last table */
567 }
568 }
569
570 /* set up table entry in r */
571 r.b = (uch)(k - w);
572 if (p >= v + n)
573 r.e = 99; /* out of values--invalid code */
574 else if (*p < s) {
575 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
576 r.v.n = *p++; /* simple code is just the value */
577 } else if(e && d) {
578 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
579 r.v.n = d[*p++ - s];
580 } else return 1;
581
582 /* fill code-like entries with r */
583 f = 1 << (k - w);
584 for (j = i >> w; j < z; j += f)
585 q[j] = r;
586
587 /* backwards increment the k-bit code i */
588 for (j = 1 << (k - 1); i & j; j >>= 1)
589 i ^= j;
590 i ^= j;
591
592 /* backup over finished tables */
593 while ((i & ((1 << w) - 1)) != x[h])
594 w -= l[--h]; /* don't need to update q */
595 }
596 }
597
598
599 /* return actual size of base table */
600 *m = l[0];
601
602
603 /* Return true (1) if we were given an incomplete table */
604 return y != 0 && g != 1;
605}
606
607
608
610/* struct huft *t; table to free */
611/* Free the malloc'ed tables built by huft_build(), which makes a linked
612 list of the tables it made, with the links in a dummy first entry of
613 each table. */
614{
615 /*register*/ struct huft *p, *q;
616
617
618 /* Go through linked list, freeing from the malloced (t[-1]) address. */
619 p = t;
620 while (p != (struct huft *)NULL)
621 {
622 q = (--p)->v.t;
623 free(p);
624 p = q;
625 }
626 return 0;
627}
628
629
630
631/*G.Barrand
632#ifdef ASM_INFLATECODES
633# define csz__Inflate_codes(tl,td,bl,bd) csz__Flate_codes(tl,td,bl,bd,(uch *)csz__slide)
634 int csz__Flate_codes(struct huft *, struct huft *, int, int, uch *);
635#else
636*/
637
638int csz__Inflate_codes(struct huft *tl, struct huft *td, int bl, int bd)
639/* struct huft *tl, *td; literal/length and distance decoder tables */
640/* int bl, bd; number of bits decoded by tl[] and td[] */
641/* inflate (decompress) the codes in a deflated (compressed) block.
642 Return an error code or zero if it all goes ok. */
643{
644 /*register*/ unsigned e; /* table entry flag/number of extra bits */
645 unsigned n, d; /* length and index for copy */
646 unsigned w; /* current window position */
647 struct huft *t; /* pointer to table entry */
648 unsigned ml, md; /* masks for bl and bd bits */
649 /*register*/ ulg b; /* bit buffer */
650 /*register*/ unsigned k; /* number of bits in bit buffer */
651
652
653 /* make local copies of globals */
654 b = bb; /* initialize bit buffer */
655 k = bk;
656 w = wp; /* initialize window position */
657
658
659 /* inflate the coded data */
660 ml = mask[bl]; /* precompute masks for speed */
661 md = mask[bd];
662 while (1) /* do until end of block */
663 {
664 NEEDBITS((unsigned)bl)
665 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
666 do {
667 if (e == 99)
668 return 1;
669 DUMPBITS(t->b)
670 e -= 16;
671 NEEDBITS(e)
672 } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16);
673 DUMPBITS(t->b)
674 if (e == 16) /* then it's a literal */
675 {
676 csz__slide[w++] = (uch)t->v.n;
677 if (w == WSIZE)
678 {
679 FLUSH(w);
680 w = 0;
681 }
682 }
683 else /* it's an EOB or a length */
684 {
685 /* exit if end of block */
686 if (e == 15)
687 break;
688
689 /* get length of block to copy */
690 NEEDBITS(e)
691 n = t->v.n + ((unsigned)b & mask[e]);
692 DUMPBITS(e);
693
694 /* decode distance of block to copy */
695 NEEDBITS((unsigned)bd)
696 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
697 do {
698 if (e == 99)
699 return 1;
700 DUMPBITS(t->b)
701 e -= 16;
702 NEEDBITS(e)
703 } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16);
704 DUMPBITS(t->b)
705 NEEDBITS(e)
706 d = w - t->v.n - ((unsigned)b & mask[e]);
707 DUMPBITS(e)
708
709 /* do the copy */
710 do {
711 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
712#ifndef NOMEMCPY
713 if (w - d >= e) /* (this test assumes unsigned comparison) */
714 {
715 memcpy(csz__slide + w, csz__slide + d, e);
716 w += e;
717 d += e;
718 }
719 else /* do it slow to avoid memcpy() overlap */
720#endif /* !NOMEMCPY */
721 do {
722 csz__slide[w++] = csz__slide[d++];
723 } while (--e);
724 if (w == WSIZE)
725 {
726 FLUSH(w);
727 w = 0;
728 }
729 } while (n);
730 }
731 }
732
733
734 /* restore the globals from the locals */
735 wp = w; /* restore global window pointer */
736 bb = b; /* restore global bit buffer */
737 bk = k;
738
739
740 /* done */
741 return 0;
742}
743
744/*#endif G.Barrand*/ /* ASM_INFLATECODES */
745
746
747
749/* "decompress" an inflated type 0 (stored) block. */
750{
751 unsigned n; /* number of bytes in block */
752 unsigned w; /* current window position */
753 /*register*/ ulg b; /* bit buffer */
754 /*register*/ unsigned k; /* number of bits in bit buffer */
755
756
757 /* make local copies of globals */
758 Trace((stderr, "\nstored block"));
759 b = bb; /* initialize bit buffer */
760 k = bk;
761 w = wp; /* initialize window position */
762
763
764 /* go to byte boundary */
765 n = k & 7;
766 DUMPBITS(n);
767
768
769 /* get the length and its complement */
770 NEEDBITS(16)
771 n = ((unsigned)b & 0xffff);
772 DUMPBITS(16)
773 NEEDBITS(16)
774 if (n != (unsigned)((~b) & 0xffff))
775 return 1; /* error in compressed data */
776 DUMPBITS(16)
777
778
779 /* read and output the compressed data */
780 while (n--)
781 {
782 NEEDBITS(8)
783 csz__slide[w++] = (uch)b;
784 if (w == WSIZE)
785 {
786 FLUSH(w);
787 w = 0;
788 }
789 DUMPBITS(8)
790 }
791
792
793 /* restore the globals from the locals */
794 wp = w; /* restore global window pointer */
795 bb = b; /* restore global bit buffer */
796 bk = k;
797 return 0;
798}
799
800
801/* Globals for literal tables (built once) */
802struct huft *csz__fixed_tl = (struct huft *)NULL;
805
807/* decompress an inflated type 1 (fixed Huffman codes) block. We should
808 either replace this with a custom decoder, or at least precompute the
809 Huffman tables. */
810{
811 /* if first time, set up tables for fixed blocks */
812 Trace((stderr, "\nliteral block"));
813 if (csz__fixed_tl == (struct huft *)NULL)
814 {
815 int i; /* temporary variable */
816 static unsigned l[288]; /* length list for huft_build */
817
818 /* literal table */
819 for (i = 0; i < 144; i++)
820 l[i] = 8;
821 for (; i < 256; i++)
822 l[i] = 9;
823 for (; i < 280; i++)
824 l[i] = 7;
825 for (; i < 288; i++) /* make a complete, but wrong code set */
826 l[i] = 8;
827 csz__fixed_bl = 7;
828 if ((i = csz__huft_build(l, 288, 257, cplens, cplext,
830 {
831 csz__fixed_tl = (struct huft *)NULL;
832 return i;
833 }
834
835 /* distance table */
836 for (i = 0; i < 30; i++) /* make an incomplete code set */
837 l[i] = 5;
838 csz__fixed_bd = 5;
839 if ((i = csz__huft_build(l, 30, 0, cpdist, cpdext, &csz__fixed_td, &csz__fixed_bd)) > 1)
840 {
842 csz__fixed_tl = (struct huft *)NULL;
843 return i;
844 }
845 }
846
847
848 /* decompress until an end-of-block code */
850}
851
852
853
855/* decompress an inflated type 2 (dynamic Huffman codes) block. */
856{
857 int i; /* temporary variables */
858 unsigned j;
859 unsigned l; /* last length */
860 unsigned m; /* mask for bit lengths table */
861 unsigned n; /* number of lengths to get */
862 struct huft *tl; /* literal/length code table */
863 struct huft *td; /* distance code table */
864 int bl; /* lookup bits for tl */
865 int bd; /* lookup bits for td */
866 unsigned nb; /* number of bit length codes */
867 unsigned nl; /* number of literal/length codes */
868 unsigned nd; /* number of distance codes */
869#ifdef PKZIP_BUG_WORKAROUND
870 static unsigned ll[288+32]; /* literal/length and distance code lengths */
871#else
872 static unsigned ll[286+30]; /* literal/length and distance code lengths */
873#endif
874 /*register*/ ulg b; /* bit buffer */
875 /*register*/ unsigned k; /* number of bits in bit buffer */
876
877 static int qflag = 0; /*G.Barrand*/
878
879 /* make local bit buffer */
880 Trace((stderr, "\ndynamic block"));
881 b = bb;
882 k = bk;
883
884
885 /* read in table lengths */
886 NEEDBITS(5)
887 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
888 DUMPBITS(5)
889 NEEDBITS(5)
890 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
891 DUMPBITS(5)
892 NEEDBITS(4)
893 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
894 DUMPBITS(4)
895#ifdef PKZIP_BUG_WORKAROUND
896 if (nl > 288 || nd > 32)
897#else
898 if (nl > 286 || nd > 30)
899#endif
900 return 1; /* bad lengths */
901
902
903 /* read in bit-length-code lengths */
904 for (j = 0; j < nb; j++)
905 {
906 NEEDBITS(3)
907 ll[border[j]] = (unsigned)b & 7;
908 DUMPBITS(3)
909 }
910 for (; j < 19; j++)
911 ll[border[j]] = 0;
912
913
914 /* build decoding table for trees--single level, 7 bit lookup */
915 bl = 7;
916 if ((i = csz__huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
917 {
918 if (i == 1)
919 csz__huft_free(tl);
920 return i; /* incomplete code set */
921 }
922
923/*G.Barrand : to quiet Coverity : */
924#define NEEDBITS_free_tl(n) {while(k<(n)){if(ibufcnt-- <= 0){csz__huft_free(tl);return 1;} b|=((ulg) *ibufptr++)<<k;k+=8;}}
925
926 /* read in literal and distance code lengths */
927 n = nl + nd;
928 m = mask[bl];
929 i = l = 0;
930 while ((unsigned)i < n)
931 {
932 NEEDBITS_free_tl((unsigned)bl)
933 j = (td = tl + ((unsigned)b & m))->b;
934 DUMPBITS(j)
935 j = td->v.n;
936 if (j < 16) /* length of code in bits (0..15) */
937 ll[i++] = l = j; /* save last length in l */
938 else if (j == 16) /* repeat last length 3 to 6 times */
939 {
941 j = 3 + ((unsigned)b & 3);
942 DUMPBITS(2)
943 if ((unsigned)i + j > n) {
944 csz__huft_free(tl); /*G.Barrand : quiet Coverity*/
945 return 1;
946 }
947 while (j--)
948 ll[i++] = l;
949 }
950 else if (j == 17) /* 3 to 10 zero length codes */
951 {
953 j = 3 + ((unsigned)b & 7);
954 DUMPBITS(3)
955 if ((unsigned)i + j > n){
956 csz__huft_free(tl); /*G.Barrand : quiet Coverity*/
957 return 1;
958 }
959 while (j--)
960 ll[i++] = 0;
961 l = 0;
962 }
963 else /* j == 18: 11 to 138 zero length codes */
964 {
966 j = 11 + ((unsigned)b & 0x7f);
967 DUMPBITS(7)
968 if ((unsigned)i + j > n) {
969 csz__huft_free(tl); /*G.Barrand : quiet Coverity*/
970 return 1;
971 }
972 while (j--)
973 ll[i++] = 0;
974 l = 0;
975 }
976 }
977
978
979 /* free decoding table for trees */
980 csz__huft_free(tl);
981
982
983 /* restore the global bit buffer */
984 bb = b;
985 bk = k;
986
987
988 /* build the decoding tables for literal/length and distance codes */
989 bl = lbits;
990 if ((i = csz__huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
991 {
992 if (i == 1 && !qflag) {
993 FPRINTF(stderr, "(incomplete l-tree) ");
994 csz__huft_free(tl);
995 }
996 return i; /* incomplete code set */
997 }
998 bd = dbits;
999 if ((i = csz__huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
1000 {
1001 if (i == 1 && !qflag) {
1002 FPRINTF(stderr, "(incomplete d-tree) ");
1003#ifdef PKZIP_BUG_WORKAROUND
1004 i = 0;
1005 }
1006#else
1007 csz__huft_free(td);
1008 }
1009 csz__huft_free(tl);
1010 return i; /* incomplete code set */
1011#endif
1012 }
1013
1014
1015 /* decompress until an end-of-block code */
1016 if (csz__Inflate_codes(tl, td, bl, bd))
1017 return 1;
1018
1019
1020 /* free the decoding tables, return */
1021 csz__huft_free(tl);
1022 csz__huft_free(td);
1023 return 0;
1024}
1025
1026
1027
1029/* int *e; last block flag */
1030/* decompress an inflated block */
1031{
1032 unsigned t; /* block type */
1033 /*register*/ ulg b; /* bit buffer */
1034 /*register*/ unsigned k; /* number of bits in bit buffer */
1035
1036
1037 /* make local bit buffer */
1038 b = bb;
1039 k = bk;
1040
1041
1042 /* read in last block bit */
1043 NEEDBITS(1)
1044 *e = (int)b & 1;
1045 DUMPBITS(1)
1046
1047
1048 /* read in block type */
1049 NEEDBITS(2)
1050 t = (unsigned)b & 3;
1051 DUMPBITS(2)
1052
1053
1054 /* restore the global bit buffer */
1055 bb = b;
1056 bk = k;
1057
1058
1059 /* inflate that block type */
1060 if (t == 2)
1061 return csz__Inflate_dynamic();
1062 if (t == 0)
1063 return csz__Inflate_stored();
1064 if (t == 1)
1065 return csz__Inflate_fixed();
1066
1067
1068 /* bad block type */
1069 return 2;
1070}
1071
1072#ifdef __cplusplus /*G.Barrand*/
1073extern "C" {
1074#endif
1075
1077/* decompress an inflated entry */
1078{
1079 int e; /* last block flag */
1080 int r; /* result code */
1081 unsigned h; /* maximum struct huft's malloc'ed */
1082
1083
1084 /* initialize window, bit buffer */
1085 wp = 0;
1086 bk = 0;
1087 bb = 0;
1088
1089
1090 /* decompress until the last block */
1091 h = 0;
1092 do {
1093 hufts = 0;
1094 if ((r = csz__Inflate_block(&e)) != 0)
1095 return r;
1096 if (hufts > h)
1097 h = hufts;
1098 } while (!e);
1099
1100
1101 /* flush out slide */
1102 FLUSH(wp);
1103
1104
1105 /* return success */
1106 Trace((stderr, "\n%lu bytes in Huffman tables (%lu/entry)\n",
1107 h * sizeof(struct huft), sizeof(struct huft)));
1108 return 0;
1109}
1110
1112{
1113 if (csz__fixed_tl != (struct huft *)NULL)
1114 {
1117 csz__fixed_td = csz__fixed_tl = (struct huft *)NULL;
1118 }
1119 return 0;
1120}
1121
1122/* G.Barrand */
1123void csz__Init_Inflate(long a_ibufcnt,unsigned char* a_ibufptr,
1124 long a_obufcnt,unsigned char* a_obufptr) {
1125 ibufcnt = a_ibufcnt;
1126 ibufptr = a_ibufptr;
1127
1128 obufcnt = a_obufcnt;
1129 obufptr = a_obufptr;
1130}
1131unsigned char* csz__obufptr() {return obufptr;}
1132
1133#ifdef __cplusplus /*G.Barrand*/
1134}
1135#endif
1136
1137#ifndef CHECK_EOF
1138static int csz__ReadByte ()
1139{
1140 int k;
1141 if(ibufcnt-- <= 0)
1142 k = -1;
1143 else
1144 k = *ibufptr++;
1145 return k;
1146}
1147#endif
1148
1149static void csz__WriteData(int n)
1150{
1151 if( obufcnt >= n ) memcpy(obufptr, csz__slide, n);
1152 obufptr += n;
1153 obufcnt -= n;
1154}
1155
int csz__Inflate_block(int *)
#define BMAX
Definition: csz_inflate.cc:403
#define N_MAX
Definition: csz_inflate.cc:404
int csz__huft_build(unsigned *, unsigned, unsigned, ush *, ush *, struct huft **, int *)
Definition: csz_inflate.cc:410
int csz__Inflate_stored(void)
Definition: csz_inflate.cc:748
#define FLUSH(n)
Definition: csz_inflate.cc:226
char boolean
Definition: csz_inflate.cc:208
unsigned short ush
Definition: csz_inflate.cc:210
int csz__Inflate(void)
int csz__Inflate_fixed(void)
Definition: csz_inflate.cc:806
int csz__fixed_bd
Definition: csz_inflate.cc:804
void csz__Init_Inflate(long a_ibufcnt, unsigned char *a_ibufptr, long a_obufcnt, unsigned char *a_obufptr)
#define NEEDBITS_free_tl(n)
#define DUMPBITS(n)
Definition: csz_inflate.cc:362
int csz__fixed_bl
Definition: csz_inflate.cc:804
struct huft * csz__fixed_tl
Definition: csz_inflate.cc:802
#define WSIZE
Definition: csz_inflate.cc:214
#define Trace(x)
Definition: csz_inflate.cc:235
int csz__Inflate_codes(struct huft *, struct huft *, int, int)
Definition: csz_inflate.cc:638
int csz__Inflate_dynamic(void)
Definition: csz_inflate.cc:854
struct huft * csz__fixed_td
Definition: csz_inflate.cc:803
#define NEEDBITS(n)
Definition: csz_inflate.cc:359
unsigned long ulg
Definition: csz_inflate.cc:211
int csz__Inflate_free(void)
unsigned char * csz__obufptr()
#define FPRINTF
Definition: csz_inflate.cc:222
int csz__huft_free(struct huft *)
Definition: csz_inflate.cc:609
unsigned char uch
Definition: csz_inflate.cc:209
union huft::@0 v
ush n
Definition: csz_inflate.cc:251
uch e
Definition: csz_inflate.cc:248
uch b
Definition: csz_inflate.cc:249
struct huft * t
Definition: csz_inflate.cc:252