Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGAntiKZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "Randomize.hh"
31#include "G4SystemOfUnits.hh"
33
36 G4Nucleus &targetNucleus )
37 {
38 const G4HadProjectile *originalIncident = &aTrack;
39 //
40 // create the target particle
41 //
42 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
43
44 if( verboseLevel > 1 )
45 {
46 const G4Material *targetMaterial = aTrack.GetMaterial();
47 G4cout << "G4RPGAntiKZeroInelastic::ApplyYourself called" << G4endl;
48 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
49 G4cout << "target material = " << targetMaterial->GetName() << ", ";
50 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
51 << G4endl;
52 }
53 //
54 // Fermi motion and evaporation
55 // As of Geant3, the Fermi energy calculation had not been Done
56 //
57 G4double ek = originalIncident->GetKineticEnergy()/MeV;
58 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
59 G4ReactionProduct modifiedOriginal;
60 modifiedOriginal = *originalIncident;
61
62 G4double tkin = targetNucleus.Cinema( ek );
63 ek += tkin;
64 modifiedOriginal.SetKineticEnergy( ek*MeV );
65 G4double et = ek + amas;
66 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
67 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
68 if( pp > 0.0 )
69 {
70 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
71 modifiedOriginal.SetMomentum( momentum * (p/pp) );
72 }
73 //
74 // calculate black track energies
75 //
76 tkin = targetNucleus.EvaporationEffects( ek );
77 ek -= tkin;
78 modifiedOriginal.SetKineticEnergy( ek*MeV );
79 et = ek + amas;
80 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
81 pp = modifiedOriginal.GetMomentum().mag()/MeV;
82 if( pp > 0.0 )
83 {
84 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
85 modifiedOriginal.SetMomentum( momentum * (p/pp) );
86 }
87 G4ReactionProduct currentParticle = modifiedOriginal;
88 G4ReactionProduct targetParticle;
89 targetParticle = *originalTarget;
90 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
91 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
92 G4bool incidentHasChanged = false;
93 G4bool targetHasChanged = false;
94 G4bool quasiElastic = false;
95 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
96 G4int vecLen = 0;
97 vec.Initialize( 0 );
98
99 const G4double cutOff = 0.1;
100 if( currentParticle.GetKineticEnergy()/MeV > cutOff )
101 Cascade( vec, vecLen,
102 originalIncident, currentParticle, targetParticle,
103 incidentHasChanged, targetHasChanged, quasiElastic );
104
105 try
106 {
107 CalculateMomenta( vec, vecLen,
108 originalIncident, originalTarget, modifiedOriginal,
109 targetNucleus, currentParticle, targetParticle,
110 incidentHasChanged, targetHasChanged, quasiElastic );
111 }
112 catch(G4HadReentrentException & aR)
113 {
114 aR.Report(G4cout);
115 throw G4HadReentrentException(__FILE__, __LINE__, "Bailing out");
116 }
117 SetUpChange( vec, vecLen,
118 currentParticle, targetParticle,
119 incidentHasChanged );
120
121 delete originalTarget;
122 return &theParticleChange;
123 }
124
125void G4RPGAntiKZeroInelastic::Cascade(
127 G4int& vecLen,
128 const G4HadProjectile *originalIncident,
129 G4ReactionProduct &currentParticle,
130 G4ReactionProduct &targetParticle,
131 G4bool &incidentHasChanged,
132 G4bool &targetHasChanged,
133 G4bool &quasiElastic )
134{
135 // Derived from H. Fesefeldt's original FORTRAN code CASK0B
136 //
137 // K0Long undergoes interaction with nucleon within a nucleus. Check if it is
138 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
139 // occurs and input particle is degraded in energy. No other particles are produced.
140 // If reaction is possible, find the correct number of pions/protons/neutrons
141 // produced using an interpolation to multiplicity data. Replace some pions or
142 // protons/neutrons by kaons or strange baryons according to the average
143 // multiplicity per Inelastic reaction.
144
145 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
146 const G4double etOriginal = originalIncident->Get4Momentum().e()/MeV;
147 const G4double pOriginal = originalIncident->Get4Momentum().vect().mag()/MeV;
148 const G4double targetMass = targetParticle.GetMass()/MeV;
149 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
150 targetMass*targetMass +
151 2.0*targetMass*etOriginal );
152 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
153
154 static G4ThreadLocal G4bool first = true;
155 const G4int numMul = 1200;
156 const G4int numSec = 60;
157 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
158 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
159
160 // np = number of pi+, nneg = number of pi-, nz = number of pi0
161
162 G4int counter, nt=0, np=0, nneg=0, nz=0;
163 const G4double c = 1.25;
164 const G4double b[] = { 0.7, 0.7 };
165 if( first ) // compute normalization constants, this will only be Done once
166 {
167 first = false;
168 G4int i;
169 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
170 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
171 counter = -1;
172 for( np=0; np<numSec/3; ++np )
173 {
174 for( nneg=std::max(0,np-2); nneg<=np; ++nneg )
175 {
176 for( nz=0; nz<numSec/3; ++nz )
177 {
178 if( ++counter < numMul )
179 {
180 nt = np+nneg+nz;
181 if( nt>0 && nt<=numSec )
182 {
183 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
184 protnorm[nt-1] += protmul[counter];
185 }
186 }
187 }
188 }
189 }
190 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
191 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
192 counter = -1;
193 for( np=0; np<(numSec/3); ++np )
194 {
195 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
196 {
197 for( nz=0; nz<numSec/3; ++nz )
198 {
199 if( ++counter < numMul )
200 {
201 nt = np+nneg+nz;
202 if( nt>0 && nt<=numSec )
203 {
204 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
205 neutnorm[nt-1] += neutmul[counter];
206 }
207 }
208 }
209 }
210 }
211 for( i=0; i<numSec; ++i )
212 {
213 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
214 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
215 }
216 } // end of initialization
217
218 const G4double expxu = 82.; // upper bound for arg. of exp
219 const G4double expxl = -expxu; // lower bound for arg. of exp
232 const G4double cech[] = {1.,1.,1.,0.70,0.60,0.55,0.35,0.25,0.18,0.15};
233 G4int iplab = G4int(std::min( 9.0, 5.0*pOriginal*MeV/GeV ));
234
235 if ((pOriginal*MeV/GeV <= 2.0) && (G4UniformRand() < cech[iplab]) ) {
236 np = nneg = nz = nt = 0;
237 iplab = G4int(std::min( 19.0, pOriginal*MeV/GeV*10.0 ));
238 const G4double cnk0[] = {0.17,0.18,0.17,0.24,0.26,0.20,0.22,0.21,0.34,0.45,
239 0.58,0.55,0.36,0.29,0.29,0.32,0.32,0.33,0.33,0.33};
240 if (G4UniformRand() > cnk0[iplab] ) {
241 G4double ran = G4UniformRand();
242 if (ran < 0.25) { // k0Long n --> pi- s+
243 if (targetParticle.GetDefinition() == aNeutron) {
244 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
245 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
246 incidentHasChanged = true;
247 targetHasChanged = true;
248 }
249 } else if( ran < 0.50 ) { // k0Long p --> pi+ s0 or k0Long n --> pi0 s0
250 if( targetParticle.GetDefinition() == aNeutron )
251 currentParticle.SetDefinitionAndUpdateE( aPiZero );
252 else
253 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
254 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
255 incidentHasChanged = true;
256 targetHasChanged = true;
257 } else if( ran < 0.75 ) { // k0Long n --> pi+ s-
258 if( targetParticle.GetDefinition() == aNeutron )
259 {
260 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
261 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
262 incidentHasChanged = true;
263 targetHasChanged = true;
264 }
265 } else { // k0Long p --> pi+ L or k0Long n --> pi0 L
266 if( targetParticle.GetDefinition() == aNeutron )
267 currentParticle.SetDefinitionAndUpdateE( aPiZero );
268 else
269 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
270 targetParticle.SetDefinitionAndUpdateE( aLambda );
271 incidentHasChanged = true;
272 targetHasChanged = true;
273 }
274 } else { // ran <= cnk0
275 quasiElastic = true;
276 if (targetParticle.GetDefinition() == aNeutron) {
277 currentParticle.SetDefinitionAndUpdateE( aKaonMinus );
278 targetParticle.SetDefinitionAndUpdateE( aProton );
279 incidentHasChanged = true;
280 targetHasChanged = true;
281 }
282 }
283 } else { // (pOriginal > 2.0*GeV) || (random number >= cech[iplab])
284 if (availableEnergy < aPiPlus->GetPDGMass()/MeV) {
285 quasiElastic = true;
286 return;
287 }
288 G4double n, anpn;
289 GetNormalizationConstant( availableEnergy, n, anpn );
290 G4double ran = G4UniformRand();
291 G4double dum, test, excs = 0.0;
292 if (targetParticle.GetDefinition() == aProton) {
293 counter = -1;
294 for( np=0; (np<numSec/3) && (ran>=excs); ++np )
295 {
296 for( nneg=std::max(0,np-2); nneg<=np && ran>=excs; ++nneg )
297 {
298 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
299 {
300 if( ++counter < numMul )
301 {
302 nt = np+nneg+nz;
303 if( nt>0 && nt<=numSec )
304 {
305 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
306 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
307 if( std::fabs(dum) < 1.0 )
308 {
309 if( test >= 1.0e-10 )excs += dum*test;
310 }
311 else
312 excs += dum*test;
313 }
314 }
315 }
316 }
317 }
318 if( ran >= excs ) // 3 previous loops continued to the end
319 {
320 quasiElastic = true;
321 return;
322 }
323 np--; nneg--; nz--;
324 switch( np-nneg )
325 {
326 case 1:
327 if( G4UniformRand() < 0.5 )
328 {
329 currentParticle.SetDefinitionAndUpdateE( aKaonMinus );
330 incidentHasChanged = true;
331 }
332 else
333 {
334 targetParticle.SetDefinitionAndUpdateE( aNeutron );
335 targetHasChanged = true;
336 }
337 case 0:
338 break;
339 default:
340 currentParticle.SetDefinitionAndUpdateE( aKaonMinus );
341 targetParticle.SetDefinitionAndUpdateE( aNeutron );
342 incidentHasChanged = true;
343 targetHasChanged = true;
344 break;
345 }
346 }
347 else // target must be a neutron
348 {
349 counter = -1;
350 for( np=0; np<numSec/3 && ran>=excs; ++np )
351 {
352 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
353 {
354 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
355 {
356 if( ++counter < numMul )
357 {
358 nt = np+nneg+nz;
359 if( nt>0 && nt<=numSec )
360 {
361 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
362 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
363 if( std::fabs(dum) < 1.0 )
364 {
365 if( test >= 1.0e-10 )excs += dum*test;
366 }
367 else
368 excs += dum*test;
369 }
370 }
371 }
372 }
373 }
374 if( ran >= excs ) // 3 previous loops continued to the end
375 {
376 quasiElastic = true;
377 return;
378 }
379 np--; nneg--; nz--;
380 switch( np-nneg )
381 {
382 case 0:
383 currentParticle.SetDefinitionAndUpdateE( aKaonMinus );
384 targetParticle.SetDefinitionAndUpdateE( aProton );
385 incidentHasChanged = true;
386 targetHasChanged = true;
387 break;
388 case 1:
389 currentParticle.SetDefinitionAndUpdateE( aKaonMinus );
390 incidentHasChanged = true;
391 break;
392 default:
393 targetParticle.SetDefinitionAndUpdateE( aProton );
394 targetHasChanged = true;
395 break;
396 }
397 }
398 if( G4UniformRand() >= 0.5 )
399 {
400 if( currentParticle.GetDefinition() == aKaonMinus &&
401 targetParticle.GetDefinition() == aNeutron )
402 {
403 ran = G4UniformRand();
404 if( ran < 0.68 )
405 {
406 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
407 targetParticle.SetDefinitionAndUpdateE( aLambda );
408 }
409 else if( ran < 0.84 )
410 {
411 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
412 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
413 }
414 else
415 {
416 currentParticle.SetDefinitionAndUpdateE( aPiZero );
417 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
418 }
419 }
420 else if( (currentParticle.GetDefinition() == aKaonZS ||
421 currentParticle.GetDefinition() == aKaonZL ) &&
422 targetParticle.GetDefinition() == aProton )
423 {
424 ran = G4UniformRand();
425 if( ran < 0.68 )
426 {
427 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
428 targetParticle.SetDefinitionAndUpdateE( aLambda );
429 }
430 else if( ran < 0.84 )
431 {
432 currentParticle.SetDefinitionAndUpdateE( aPiZero );
433 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
434 }
435 else
436 {
437 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
438 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
439 }
440 }
441 else
442 {
443 ran = G4UniformRand();
444 if( ran < 0.67 )
445 {
446 currentParticle.SetDefinitionAndUpdateE( aPiZero );
447 targetParticle.SetDefinitionAndUpdateE( aLambda );
448 }
449 else if( ran < 0.78 )
450 {
451 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
452 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
453 }
454 else if( ran < 0.89 )
455 {
456 currentParticle.SetDefinitionAndUpdateE( aPiZero );
457 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
458 }
459 else
460 {
461 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
462 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
463 }
464 }
465 incidentHasChanged = true;
466 targetHasChanged = true;
467 }
468 }
469 if( currentParticle.GetDefinition() == aKaonZL )
470 {
471 if( G4UniformRand() >= 0.5 )
472 {
473 currentParticle.SetDefinitionAndUpdateE( aKaonZS );
474 incidentHasChanged = true;
475 }
476 }
477 if( targetParticle.GetDefinition() == aKaonZL )
478 {
479 if( G4UniformRand() >= 0.5 )
480 {
481 targetParticle.SetDefinitionAndUpdateE( aKaonZS );
482 targetHasChanged = true;
483 }
484 }
485 SetUpPions( np, nneg, nz, vec, vecLen );
486 return;
487}
488
489 /* end of file */
490
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
void Report(std::ostream &aS)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:112
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
static G4Lambda * Lambda()
Definition: G4Lambda.cc:107
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4PionZero * PionZero()
Definition: G4PionZero.cc:107
static G4Proton * Proton()
Definition: G4Proton.cc:92
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:107
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:101
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77