Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ComponentGGNuclNuclXsc.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 24.11.08 V. Grichine - first implementation
27//
28// 04.09.18 V. Ivantchenko Major revision of interfaces and implementation
29// 27.05.19 V. Ivantchenko Removed obsolete methods and members
30
32
34#include "G4SystemOfUnits.hh"
35#include "G4NucleiProperties.hh"
37#include "G4HadronNucleonXsc.hh"
39#include "G4NuclearRadii.hh"
40
41static const G4double inve = 1./CLHEP::eplus;
42
44 : G4VComponentCrossSection("Glauber-Gribov Nucl-nucl"),
45 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
46 fDiffractionXsc(0.0), fEnergy(0.0), fParticle(nullptr), fZ(0), fA(0)
47{
48 theProton = G4Proton::Proton();
49 theNeutron = G4Neutron::Neutron();
50 fHNXsc = new G4HadronNucleonXsc();
51 fHadrNucl = new G4ComponentGGHadronNucleusXsc();
52}
53
55{
56 delete fHNXsc;
57}
58
59//////////////////////////////////////////////////////////////////////
60
62 const G4ParticleDefinition* aParticle, G4double kinEnergy,
63 G4int Z, G4double A)
64{
65 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
66 return fTotalXsc;
67}
68
69////////////////////////////////////////////////////////////////////
70
72 const G4ParticleDefinition* aParticle, G4double kinEnergy,
73 G4int Z, G4int A)
74{
75 ComputeCrossSections(aParticle, kinEnergy, Z, A);
76 return fTotalXsc;
77}
78
79/////////////////////////////////////////////////////////////////////
80
82 const G4ParticleDefinition* aParticle, G4double kinEnergy,
83 G4int Z, G4double A)
84{
85 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
86 return fInelasticXsc;
87}
88
89////////////////////////////////////////////////////////////////////
90
92 const G4ParticleDefinition* aParticle, G4double kinEnergy,
93 G4int Z, G4int A)
94{
95 ComputeCrossSections(aParticle, kinEnergy, Z, A);
96 return fInelasticXsc;
97}
98
99//////////////////////////////////////////////////////////////////
100
102 const G4ParticleDefinition* aParticle, G4double kinEnergy,
103 G4int Z, G4double A)
104{
105 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
106 return fElasticXsc;
107}
108
109///////////////////////////////////////////////////////////////////
110
112 const G4ParticleDefinition* aParticle, G4double kinEnergy,
113 G4int Z, G4int A)
114{
115 ComputeCrossSections(aParticle, kinEnergy, Z, A);
116 return fElasticXsc;
117}
118
119////////////////////////////////////////////////////////////////
120
122 const G4ParticleDefinition* aParticle, G4double kinEnergy,
123 G4int Z, G4int A)
124{
125 ComputeCrossSections(aParticle, kinEnergy, Z, A);
126 return (fInelasticXsc > fProductionXsc)
127 ? (fInelasticXsc - fProductionXsc)/fInelasticXsc : 0.0;
128}
129
130//////////////////////////////////////////////////////////////////////
131
133{}
134
135//////////////////////////////////////////////////////////////////////
136
138{
139 G4cout << "G4ComponentGGNuclNuclXsc: uses Glauber-Gribov formula" << G4endl;
140}
141
142//////////////////////////////////////////////////////////////////////
143
144void G4ComponentGGNuclNuclXsc::Description(std::ostream& outFile) const
145{
146 outFile << "G4ComponentGGNuclNuclXsc calculates total, inelastic and\n"
147 << "elastic cross sections for nucleus-nucleus collisions using\n"
148 << "the Glauber model with Gribov corrections. It is valid for\n"
149 << "all incident energies above 100 keV./n"
150 << "For the hydrogen target G4HadronNucleonXsc class is used.\n";
151}
152
153///////////////////////////////////////////////////////////////////////////////
154//
155// Calculates total and inelastic Xsc, derives elastic as total - inelastic
156// accordong to Glauber model with Gribov correction calculated in the dipole
157// approximation on light cone. Gaussian density of point-like nucleons helps
158// to calculate rest integrals of the model. [1] B.Z. Kopeliovich,
159// nucl-th/0306044 + simplification above
160
161void G4ComponentGGNuclNuclXsc::ComputeCrossSections(
162 const G4ParticleDefinition* aParticle, G4double kinEnergy,
163 G4int Z, G4int A)
164{
165 // check cache
166 if(aParticle == fParticle && fZ == Z && fA == A && kinEnergy == fEnergy)
167 { return; }
168 fParticle = aParticle;
169 fZ = Z;
170 fA = A;
171 fEnergy = kinEnergy;
172
173 G4int pZ = G4lrint(aParticle->GetPDGCharge()*inve);
174 G4int pA = aParticle->GetBaryonNumber();
175
176 // hydrogen
177 if(1 == Z && 1 == A) {
178 G4double e = kinEnergy*CLHEP::proton_mass_c2/aParticle->GetPDGMass();
179 fHadrNucl->ComputeCrossSections(theProton, e, pZ, pA);
180 fTotalXsc = fHadrNucl->GetTotalGlauberGribovXsc();
181 fElasticXsc = fHadrNucl->GetElasticGlauberGribovXsc();
182 fInelasticXsc = fHadrNucl->GetInelasticGlauberGribovXsc();
183 fProductionXsc = fHadrNucl->GetProductionGlauberGribovXsc();
184 fDiffractionXsc = fHadrNucl->GetDiffractionGlauberGribovXsc();
185 return;
186 }
187 static const G4double cofInelastic = 2.4;
188 static const G4double cofTotal = 2.0;
189
190 G4double pTkin = kinEnergy/(G4double)pA;
191
192 G4int pN = pA - pZ;
193 G4int tN = A - Z;
194
196 G4double pR = G4NuclearRadii::Radius(pZ, pA);
197
198 G4double cB = ComputeCoulombBarier(aParticle, kinEnergy, Z, A, pR, tR);
199
200 if ( cB > 0. )
201 {
202 G4double sigma = (pZ*Z+pN*tN)*fHNXsc->HadronNucleonXscNS(theProton, theProton, pTkin);
203 G4double ppInXsc = fHNXsc->GetInelasticHadronNucleonXsc();
204
205 sigma += (pZ*tN+pN*Z)*fHNXsc->HadronNucleonXscNS(theNeutron, theProton, pTkin);
206 G4double npInXsc = fHNXsc->GetInelasticHadronNucleonXsc();
207
208 // G4cout<<"ppInXsc = "<<ppInXsc/millibarn<<"; npInXsc = "<<npInXsc/millibarn<<G4endl;
209 // G4cout<<"npTotXsc = "<<fHNXsc->GetTotalHadronNucleonXsc()/millibarn<<"; npElXsc = "
210 // <<fHNXsc->GetElasticHadronNucleonXsc()/millibarn<<G4endl;
211
212 G4double nucleusSquare = cofTotal*CLHEP::pi*( pR*pR + tR*tR ); // basically 2piRR
213
214 G4double ratio= sigma/nucleusSquare;
215 fTotalXsc = nucleusSquare*G4Log( 1. + ratio )*cB;
216 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )*cB/cofInelastic;
217 fElasticXsc = std::max(fTotalXsc - fInelasticXsc, 0.0);
218
219 G4double difratio = ratio/(1.+ratio);
220 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) );
221
222 G4double xratio= ((pZ*Z+pN*tN)*ppInXsc + (pZ*tN+pN*Z)*npInXsc)/nucleusSquare;
223 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*xratio)*cB/cofInelastic;
224 fProductionXsc = std::min(fProductionXsc, fInelasticXsc);
225 }
226 else
227 {
228 fInelasticXsc = 0.;
229 fTotalXsc = 0.;
230 fElasticXsc = 0.;
231 fProductionXsc = 0.;
232 fDiffractionXsc= 0.;
233 }
234}
235
236///////////////////////////////////////////////////////////////////////////////
237
239 const G4ParticleDefinition* aParticle,
240 G4double pTkin, G4int Z, G4int A,
241 G4double pR, G4double tR)
242{
243 G4int pZ = aParticle->GetPDGCharge()*inve;
244 G4double pM = aParticle->GetPDGMass();
246 G4double pElab = pTkin + pM;
247 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
248 G4double totTcm = totEcm - pM -tM;
249
250 static const G4double qfact = CLHEP::fine_structure_const*CLHEP::hbarc;
251 G4double bC = qfact*pZ*Z*0.5/(pR + tR);
252
253 G4double ratio = (totTcm <= bC ) ? 0. : 1. - bC/totTcm;
254 // G4cout<<"G4ComponentGGNuclNuclXsc::ComputeCoulombBarier= "<<ratio
255 // <<"; pTkin(GeV)= " <<pTkin/GeV<<";
256 // " pPlab = "<<pPlab/GeV<<"; bC = "<<bC/GeV<<"; pTcm = "
257 // <<pTcm/GeV<<G4endl;
258 return ratio;
259}
260
261//////////////////////////////////////////////////////////////////////////
262//
263// Return single-diffraction/inelastic cross-section ratio
264
266 const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
267{
268 ComputeCrossSections(aParticle->GetDefinition(),
269 aParticle->GetKineticEnergy(),
270 G4lrint(tZ), G4lrint(tA));
271
272 return (fInelasticXsc > 0.0) ? fDiffractionXsc/fInelasticXsc : 0.0;
273}
274
275//////////////////////////////////////////////////////////////////////////
276//
277// Return quasi-elastic/inelastic cross-section ratio
278
280 const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
281{
282 ComputeCrossSections(aParticle->GetDefinition(),
283 aParticle->GetKineticEnergy(),
284 G4lrint(tZ), G4lrint(tA));
285
286 return (fInelasticXsc > 0.0) ? 1.0 - fProductionXsc/fInelasticXsc : 0.0;
287}
288
289///////////////////////////////////////////////////////////////////////////////
double A(double temperature)
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void ComputeCrossSections(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4double ComputeQuasiElasticRatio(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
G4double GetRatioQE(const G4DynamicParticle *, G4double At, G4double Zt)
G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4double GetRatioSD(const G4DynamicParticle *, G4double At, G4double Zt)
void DumpPhysicsTable(const G4ParticleDefinition &) final
G4double GetInelasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
G4double ComputeCoulombBarier(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A, G4double pR, G4double tR)
G4double GetTotalIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
void Description(std::ostream &) const final
G4double GetElasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
G4double GetInelasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetInelasticHadronNucleonXsc() const
G4double HadronNucleonXscNS(const G4ParticleDefinition *theParticle, const G4ParticleDefinition *nucleon, G4double ekin)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
static G4double Radius(G4int Z, G4int A)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double GetPDGCharge() const
static G4Proton * Proton()
Definition: G4Proton.cc:92
int G4lrint(double ad)
Definition: templates.hh:134