Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PreCompoundEmission.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4PreCompoundEmission
33//
34// Author: V.Lara
35//
36// Modified:
37// 15.01.2010 J.M.Quesada added protection against unphysical values of parameter an
38// 19.01.2010 V.Ivanchenko simplified computation of parameter an, sample cosTheta
39// instead of theta; protect all calls to sqrt
40// 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
41// use int Z and A and cleanup
42//
43
46#include "G4SystemOfUnits.hh"
47#include "G4Pow.hh"
48#include "G4Exp.hh"
49#include "G4Log.hh"
50#include "Randomize.hh"
51#include "G4RandomDirection.hh"
55#include "G4NuclearLevelData.hh"
57
59{
60 theFragmentsFactory = new G4PreCompoundEmissionFactory();
61 theFragmentsVector =
62 new G4PreCompoundFragmentVector(theFragmentsFactory->GetFragmentVector());
63 g4calc = G4Pow::GetInstance();
65 G4DeexPrecoParameters* param = fNuclData->GetParameters();
66 fFermiEnergy = param->GetFermiEnergy();
67 fUseAngularGenerator = param->UseAngularGen();
68}
69
71{
72 delete theFragmentsFactory;
73 delete theFragmentsVector;
74}
75
77{
78 if (theFragmentsFactory) { delete theFragmentsFactory; }
79 theFragmentsFactory = new G4PreCompoundEmissionFactory();
80 if (theFragmentsVector) {
81 theFragmentsVector->SetVector(theFragmentsFactory->GetFragmentVector());
82 } else {
83 theFragmentsVector =
84 new G4PreCompoundFragmentVector(theFragmentsFactory->GetFragmentVector());
85 }
86}
87
89{
90 if (theFragmentsFactory) delete theFragmentsFactory;
91 theFragmentsFactory = new G4HETCEmissionFactory();
92 if (theFragmentsVector) {
93 theFragmentsVector->SetVector(theFragmentsFactory->GetFragmentVector());
94 } else {
95 theFragmentsVector =
96 new G4PreCompoundFragmentVector(theFragmentsFactory->GetFragmentVector());
97 }
98}
99
102{
103 // Choose a Fragment for emission
104 G4VPreCompoundFragment * thePreFragment =
105 theFragmentsVector->ChooseFragment();
106 if (thePreFragment == nullptr)
107 {
108 G4cout << "G4PreCompoundEmission::PerformEmission : "
109 << "I couldn't choose a fragment\n"
110 << "while trying to de-excite\n"
111 << aFragment << G4endl;
112 throw G4HadronicException(__FILE__, __LINE__, "");
113 }
114
115 //G4cout << "Chosen fragment: " << G4endl;
116 //G4cout << *thePreFragment << G4endl;
117
118 // Kinetic Energy of emitted fragment
119 G4double kinEnergy = thePreFragment->SampleKineticEnergy(aFragment);
120 kinEnergy = std::max(kinEnergy, 0.0);
121
122 // Calculate the fragment momentum (three vector)
123 if(fUseAngularGenerator) {
124 AngularDistribution(thePreFragment,aFragment,kinEnergy);
125 } else {
126 G4double pmag =
127 std::sqrt(kinEnergy*(kinEnergy + 2.0*thePreFragment->GetNuclearMass()));
128 theFinalMomentum = pmag*G4RandomDirection();
129 }
130
131 // Mass of emittef fragment
132 G4double EmittedMass = thePreFragment->GetNuclearMass();
133 // Now we can calculate the four momentum
134 // both options are valid and give the same result but 2nd one is faster
135 G4LorentzVector Emitted4Momentum(theFinalMomentum,EmittedMass + kinEnergy);
136
137 // Perform Lorentz boost
138 G4LorentzVector Rest4Momentum = aFragment.GetMomentum();
139 Emitted4Momentum.boost(Rest4Momentum.boostVector());
140
141 // Set emitted fragment momentum
142 thePreFragment->SetMomentum(Emitted4Momentum);
143
144 // NOW THE RESIDUAL NUCLEUS
145 // ------------------------
146
147 Rest4Momentum -= Emitted4Momentum;
148
149 // Update nucleus parameters:
150 // --------------------------
151
152 // Z and A
153 aFragment.SetZandA_asInt(thePreFragment->GetRestZ(),
154 thePreFragment->GetRestA());
155
156 // Number of excitons
157 aFragment.SetNumberOfParticles(aFragment.GetNumberOfParticles()-
158 thePreFragment->GetA());
159 // Number of charges
160 aFragment.SetNumberOfCharged(aFragment.GetNumberOfCharged()-
161 thePreFragment->GetZ());
162
163 // Update nucleus momentum
164 // A check on consistence of Z, A, and mass will be performed
165 aFragment.SetMomentum(Rest4Momentum);
166
167 // Create a G4ReactionProduct
168 G4ReactionProduct * MyRP = thePreFragment->GetReactionProduct();
169
170 return MyRP;
171}
172
173void G4PreCompoundEmission::AngularDistribution(
174 G4VPreCompoundFragment* thePreFragment,
175 const G4Fragment& aFragment,
176 G4double ekin)
177{
178 G4int p = aFragment.GetNumberOfParticles();
179 G4int h = aFragment.GetNumberOfHoles();
180 G4double U = aFragment.GetExcitationEnergy();
181
182 // Emission particle separation energy
183 G4double Bemission = thePreFragment->GetBindingEnergy();
184
185 G4double gg = (6.0/pi2)*fNuclData->GetLevelDensity(aFragment.GetZ_asInt(),
186 aFragment.GetA_asInt(),U);
187
188 // Average exciton energy relative to bottom of nuclear well
189 G4double Eav = 2*p*(p+1)/((p+h)*gg);
190
191 // Excitation energy relative to the Fermi Level
192 G4double Uf = std::max(U - (p - h)*fFermiEnergy , 0.0);
193 // G4double Uf = U - KineticEnergyOfEmittedFragment - Bemission;
194
195 G4double w_num = rho(p+1, h, gg, Uf, fFermiEnergy);
196 G4double w_den = rho(p, h, gg, Uf, fFermiEnergy);
197 if (w_num > 0.0 && w_den > 0.0)
198 {
199 Eav *= (w_num/w_den);
200 Eav += - Uf/(p+h) + fFermiEnergy;
201 }
202 else
203 {
204 Eav = fFermiEnergy;
205 }
206
207 // VI + JMQ 19/01/2010 update computation of the parameter an
208 //
209 G4double an = 0.0;
210 G4double Eeff = ekin + Bemission + fFermiEnergy;
211 if(ekin > DBL_MIN && Eeff > DBL_MIN) {
212
213 G4double zeta = std::max(1.0,9.3/std::sqrt(ekin/MeV));
214
215 // This should be the projectile energy. If I would know which is
216 // the projectile (proton, neutron) I could remove the binding energy.
217 // But, what happens if INC precedes precompound? This approximation
218 // seems to work well enough
219 G4double ProjEnergy = aFragment.GetExcitationEnergy();
220
221 an = 3*std::sqrt((ProjEnergy+fFermiEnergy)*Eeff)/(zeta*Eav);
222
223 G4int ne = aFragment.GetNumberOfExcitons() - 1;
224 if ( ne > 1 ) { an /= (G4double)ne; }
225
226 // protection of exponent
227 if ( an > 10. ) { an = 10.; }
228 }
229
230 // sample cosine of theta and not theta as in old versions
231 G4double random = G4UniformRand();
232 G4double cost;
233
234 if(an < 0.1) { cost = 1. - 2*random; }
235 else {
236 G4double exp2an = G4Exp(-2*an);
237 cost = 1. + G4Log(1-random*(1-exp2an))/an;
238 if(cost > 1.) { cost = 1.; }
239 else if(cost < -1.) {cost = -1.; }
240 }
241
242 G4double phi = CLHEP::twopi*G4UniformRand();
243
244 // Calculate the momentum magnitude of emitted fragment
245 G4double pmag =
246 std::sqrt(ekin*(ekin + 2.0*thePreFragment->GetNuclearMass()));
247
248 G4double sint = std::sqrt((1.0-cost)*(1.0+cost));
249
250 theFinalMomentum.set(pmag*std::cos(phi)*sint,pmag*std::sin(phi)*sint,
251 pmag*cost);
252
253 // theta is the angle wrt the incident direction
254 G4ThreeVector theIncidentDirection = aFragment.GetMomentum().vect().unit();
255 theFinalMomentum.rotateUz(theIncidentDirection);
256}
257
258G4double G4PreCompoundEmission::rho(G4int p, G4int h, G4double gg,
259 G4double E, G4double Ef) const
260{
261 // 25.02.2010 V.Ivanchenko added more protections
262 G4double Aph = (p*p + h*h + p - 3.0*h)/(4.0*gg);
263 // G4double alpha = (p*p + h*h)/(2.0*gg);
264
265 if ( E - Aph < 0.0) { return 0.0; }
266
267 G4double logConst = (p+h)*G4Log(gg)
268 - g4calc->logfactorial(p+h-1) - g4calc->logfactorial(p)
269 - g4calc->logfactorial(h);
270
271 // initialise values using j=0
272
273 G4double t1=1;
274 G4double t2=1;
275 G4double logt3 = (p+h-1) * G4Log(E-Aph) + logConst;
276 const G4double logmax = 200.;
277 if(logt3 > logmax) { logt3 = logmax; }
278 G4double tot = G4Exp( logt3 );
279
280 // and now sum rest of terms
281 // 25.02.2010 V.Ivanchenko change while to for loop and cleanup
282 G4double Eeff = E - Aph;
283 for(G4int j=1; j<=h; ++j)
284 {
285 Eeff -= Ef;
286 if(Eeff < 0.0) { break; }
287 t1 *= -1.;
288 t2 *= (G4double)(h+1-j)/(G4double)j;
289 logt3 = (p+h-1) * G4Log( Eeff) + logConst;
290 if(logt3 > logmax) { logt3 = logmax; }
291 tot += t1*t2*G4Exp(logt3);
292 }
293
294 return tot;
295}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
G4ThreeVector G4RandomDirection()
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
G4int GetNumberOfParticles() const
Definition: G4Fragment.hh:337
G4int GetNumberOfHoles() const
Definition: G4Fragment.hh:357
void SetNumberOfCharged(G4int value)
Definition: G4Fragment.hh:381
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:275
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:299
G4int GetZ_asInt() const
Definition: G4Fragment.hh:263
G4int GetNumberOfExcitons() const
Definition: G4Fragment.hh:332
void SetMomentum(const G4LorentzVector &value)
Definition: G4Fragment.hh:304
void SetNumberOfParticles(G4int value)
Definition: G4Fragment.hh:376
G4int GetNumberOfCharged() const
Definition: G4Fragment.hh:342
void SetZandA_asInt(G4int Znew, G4int Anew)
Definition: G4Fragment.hh:268
G4int GetA_asInt() const
Definition: G4Fragment.hh:258
G4double GetLevelDensity(G4int Z, G4int A, G4double U)
G4DeexPrecoParameters * GetParameters()
static G4NuclearLevelData * GetInstance()
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double logfactorial(G4int Z) const
Definition: G4Pow.hh:237
G4ReactionProduct * PerformEmission(G4Fragment &aFragment)
G4VPreCompoundFragment * ChooseFragment()
std::vector< G4VPreCompoundFragment * > * GetFragmentVector()
virtual G4double SampleKineticEnergy(const G4Fragment &aFragment)=0
G4double GetNuclearMass() const
G4double GetBindingEnergy() const
G4int GetRestZ() const
G4ReactionProduct * GetReactionProduct() const
void SetMomentum(const G4LorentzVector &value)
G4int GetRestA() const
#define DBL_MIN
Definition: templates.hh:54