Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ElasticHNScattering Class Reference

#include <G4ElasticHNScattering.hh>

Public Member Functions

 G4ElasticHNScattering ()
 
virtual ~G4ElasticHNScattering ()
 
virtual G4bool ElasticScattering (G4VSplitableHadron *aPartner, G4VSplitableHadron *bPartner, G4FTFParameters *theParameters) const
 

Detailed Description

Definition at line 50 of file G4ElasticHNScattering.hh.

Constructor & Destructor Documentation

◆ G4ElasticHNScattering()

G4ElasticHNScattering::G4ElasticHNScattering ( )

Definition at line 59 of file G4ElasticHNScattering.cc.

59{}

◆ ~G4ElasticHNScattering()

G4ElasticHNScattering::~G4ElasticHNScattering ( )
virtual

Definition at line 189 of file G4ElasticHNScattering.cc.

189{}

Member Function Documentation

◆ ElasticScattering()

G4bool G4ElasticHNScattering::ElasticScattering ( G4VSplitableHadron aPartner,
G4VSplitableHadron bPartner,
G4FTFParameters theParameters 
) const
virtual

Definition at line 64 of file G4ElasticHNScattering.cc.

66 {
67 projectile->IncrementCollisionCount( 1 );
68 target->IncrementCollisionCount( 1 );
69
70 if ( projectile->Get4Momentum().z() < 0.0 ) return false; //Uzhi Aug.2019
71
72 // Projectile parameters
73 G4LorentzVector Pprojectile = projectile->Get4Momentum();
74 G4double M0projectile = Pprojectile.mag();
75 G4double M0projectile2 = M0projectile * M0projectile;
76
77 // Target parameters
78 G4LorentzVector Ptarget = target->Get4Momentum();
79 G4double M0target = Ptarget.mag();
80 G4double M0target2 = M0target * M0target;
81
82 G4double AveragePt2 = theParameters->GetAvaragePt2ofElasticScattering();
83
84 // Transform momenta to cms and then rotate parallel to z axis;
85 G4LorentzVector Psum;
86 Psum = Pprojectile + Ptarget;
87 G4LorentzRotation toCms( -1*Psum.boostVector() );
88 G4LorentzVector Ptmp = toCms*Pprojectile;
89 if ( Ptmp.pz() <= 0.0 ) return false;
90 //"String" moving backwards in CMS, abort collision !
91 //G4cout << " abort Collision! " << G4endl;
92 toCms.rotateZ( -1*Ptmp.phi() );
93 toCms.rotateY( -1*Ptmp.theta() );
94 G4LorentzRotation toLab( toCms.inverse() );
95 Pprojectile.transform( toCms );
96 Ptarget.transform( toCms );
97
98 G4double PZcms2, PZcms;
99 G4double S = Psum.mag2();
100 G4double SqrtS = std::sqrt( S );
101 if ( SqrtS < M0projectile + M0target ) return false;
102
103 PZcms2 = ( S*S + sqr( M0projectile2 ) + sqr( M0target2 )
104 - 2*S*M0projectile2 - 2*S*M0target2 - 2*M0projectile2*M0target2 ) / 4.0 / S;
105
106 PZcms = ( PZcms2 > 0.0 ? std::sqrt( PZcms2 ) : 0.0 );
107
108 G4double maxPtSquare = PZcms2;
109
110 // Now we can calculate the transferred Pt
111 G4double Pt2;
112 G4double ProjMassT2, ProjMassT;
113 G4double TargMassT2, TargMassT;
114 G4LorentzVector Qmomentum;
115
116 const G4int maxNumberOfLoops = 1000;
117 G4int loopCounter = 0;
118 do {
119 Qmomentum = G4LorentzVector( GaussianPt( AveragePt2, maxPtSquare ), 0.0 );
120 Pt2 = G4ThreeVector( Qmomentum.vect() ).mag2();
121 ProjMassT2 = M0projectile2 + Pt2;
122 ProjMassT = std::sqrt( ProjMassT2 );
123 TargMassT2 = M0target2 + Pt2;
124 TargMassT = std::sqrt( TargMassT2 );
125 } while ( ( SqrtS < ProjMassT + TargMassT ) &&
126 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */
127 if ( loopCounter >= maxNumberOfLoops ) {
128 return false;
129 }
130
131 PZcms2 = ( S*S + sqr( ProjMassT2 ) + sqr( TargMassT2 )
132 - 2.0*S*ProjMassT2 - 2.0*S*TargMassT2 - 2.0*ProjMassT2*TargMassT2 ) / 4.0 / S;
133
134 if ( PZcms2 < 0.0 ) { PZcms2 = 0.0; }; // to avoid the exactness problem
135 PZcms = std::sqrt( PZcms2 );
136 Pprojectile.setPz( PZcms );
137 Ptarget.setPz( -PZcms );
138 Pprojectile += Qmomentum;
139 Ptarget -= Qmomentum;
140
141 // Transform back and update SplitableHadron Participant.
142 Pprojectile.transform( toLab );
143 Ptarget.transform( toLab );
144
145 // Calculation of the creation time
146 projectile->SetTimeOfCreation( target->GetTimeOfCreation() );
147 projectile->SetPosition( target->GetPosition() );
148
149 // Creation time and position of target nucleon were determined at
150 // ReggeonCascade() of G4FTFModel
151
152 projectile->Set4Momentum( Pprojectile );
153 target->Set4Momentum( Ptarget );
154
155 //projectile->IncrementCollisionCount( 1 );
156 //target->IncrementCollisionCount( 1 );
157
158 return true;
159}
double S(double temp)
CLHEP::HepLorentzVector G4LorentzVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
double mag2() const
double theta() const
Hep3Vector boostVector() const
Hep3Vector vect() const
HepLorentzVector & rotateZ(double)
HepLorentzVector & rotateY(double)
HepLorentzVector & transform(const HepRotation &)
G4double GetAvaragePt2ofElasticScattering()
T sqr(const T &x)
Definition: templates.hh:128

The documentation for this class was generated from the following files: