Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGSigmaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50
51 if( verboseLevel > 1 )
52 {
53 const G4Material *targetMaterial = aTrack.GetMaterial();
54 G4cout << "G4RPGSigmaMinusInelastic::ApplyYourself called" << G4endl;
55 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56 G4cout << "target material = " << targetMaterial->GetName() << ", ";
57 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58 << G4endl;
59 }
60
61 // Fermi motion and evaporation
62 // As of Geant3, the Fermi energy calculation had not been Done
63
64 G4double ek = originalIncident->GetKineticEnergy()/MeV;
65 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66 G4ReactionProduct modifiedOriginal;
67 modifiedOriginal = *originalIncident;
68
69 G4double tkin = targetNucleus.Cinema( ek );
70 ek += tkin;
71 modifiedOriginal.SetKineticEnergy( ek*MeV );
72 G4double et = ek + amas;
73 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75 if( pp > 0.0 )
76 {
77 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78 modifiedOriginal.SetMomentum( momentum * (p/pp) );
79 }
80 //
81 // calculate black track energies
82 //
83 tkin = targetNucleus.EvaporationEffects( ek );
84 ek -= tkin;
85 modifiedOriginal.SetKineticEnergy( ek*MeV );
86 et = ek + amas;
87 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88 pp = modifiedOriginal.GetMomentum().mag()/MeV;
89 if( pp > 0.0 )
90 {
91 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92 modifiedOriginal.SetMomentum( momentum * (p/pp) );
93 }
94 G4ReactionProduct currentParticle = modifiedOriginal;
95 G4ReactionProduct targetParticle;
96 targetParticle = *originalTarget;
97 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99 G4bool incidentHasChanged = false;
100 G4bool targetHasChanged = false;
101 G4bool quasiElastic = false;
102 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103 G4int vecLen = 0;
104 vec.Initialize( 0 );
105
106 const G4double cutOff = 0.1;
107 if( originalIncident->GetKineticEnergy()/MeV > cutOff )
108 Cascade( vec, vecLen,
109 originalIncident, currentParticle, targetParticle,
110 incidentHasChanged, targetHasChanged, quasiElastic );
111
112 CalculateMomenta( vec, vecLen,
113 originalIncident, originalTarget, modifiedOriginal,
114 targetNucleus, currentParticle, targetParticle,
115 incidentHasChanged, targetHasChanged, quasiElastic );
116
117 SetUpChange( vec, vecLen,
118 currentParticle, targetParticle,
119 incidentHasChanged );
120
121 delete originalTarget;
122 return &theParticleChange;
123}
124
125
126void G4RPGSigmaMinusInelastic::Cascade(
128 G4int& vecLen,
129 const G4HadProjectile *originalIncident,
130 G4ReactionProduct &currentParticle,
131 G4ReactionProduct &targetParticle,
132 G4bool &incidentHasChanged,
133 G4bool &targetHasChanged,
134 G4bool &quasiElastic )
135{
136 // Derived from H. Fesefeldt's original FORTRAN code CASSM
137 //
138 // SigmaMinus undergoes interaction with nucleon within a nucleus. Check if it is
139 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140 // occurs and input particle is degraded in energy. No other particles are produced.
141 // If reaction is possible, find the correct number of pions/protons/neutrons
142 // produced using an interpolation to multiplicity data. Replace some pions or
143 // protons/neutrons by kaons or strange baryons according to the average
144 // multiplicity per Inelastic reaction.
145
146 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148 const G4double targetMass = targetParticle.GetMass()/MeV;
149 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
150 targetMass*targetMass +
151 2.0*targetMass*etOriginal );
152 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
153 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
154 {
155 quasiElastic = true;
156 return;
157 }
158 static G4ThreadLocal G4bool first = true;
159 const G4int numMul = 1200;
160 const G4int numSec = 60;
161 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
162 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
163 // np = number of pi+, nneg = number of pi-, nz = number of pi0
164 G4int counter, nt=0, np=0, nneg=0, nz=0;
165 G4double test;
166 const G4double c = 1.25;
167 const G4double b[] = { 0.70, 0.70 };
168 if( first ) // compute normalization constants, this will only be Done once
169 {
170 first = false;
171 G4int i;
172 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
173 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
174 counter = -1;
175 for( np=0; np<(numSec/3); ++np )
176 {
177 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
178 {
179 for( nz=0; nz<numSec/3; ++nz )
180 {
181 if( ++counter < numMul )
182 {
183 nt = np+nneg+nz;
184 if( nt>0 && nt<=numSec )
185 {
186 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
187 protnorm[nt-1] += protmul[counter];
188 }
189 }
190 }
191 }
192 }
193 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
194 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
195 counter = -1;
196 for( np=0; np<numSec/3; ++np )
197 {
198 for( nneg=np; nneg<=(np+2); ++nneg )
199 {
200 for( nz=0; nz<numSec/3; ++nz )
201 {
202 if( ++counter < numMul )
203 {
204 nt = np+nneg+nz;
205 if( nt>0 && nt<=numSec )
206 {
207 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
208 neutnorm[nt-1] += neutmul[counter];
209 }
210 }
211 }
212 }
213 }
214 for( i=0; i<numSec; ++i )
215 {
216 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218 }
219 } // end of initialization
220
221 const G4double expxu = 82.; // upper bound for arg. of exp
222 const G4double expxl = -expxu; // lower bound for arg. of exp
227
228 // energetically possible to produce pion(s) --> inelastic scattering
229
230 G4double n, anpn;
231 GetNormalizationConstant( availableEnergy, n, anpn );
232 G4double ran = G4UniformRand();
233 G4double dum, excs = 0.0;
234 if( targetParticle.GetDefinition() == aProton )
235 {
236 counter = -1;
237 for( np=0; np<numSec/3 && ran>=excs; ++np )
238 {
239 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
240 {
241 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
242 {
243 if( ++counter < numMul )
244 {
245 nt = np+nneg+nz;
246 if( nt>0 && nt<=numSec )
247 {
248 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
249 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
250 if( std::fabs(dum) < 1.0 )
251 {
252 if( test >= 1.0e-10 )excs += dum*test;
253 }
254 else
255 excs += dum*test;
256 }
257 }
258 }
259 }
260 }
261 if( ran >= excs ) // 3 previous loops continued to the end
262 {
263 quasiElastic = true;
264 return;
265 }
266 np--; nneg--; nz--;
267 G4int ncht = std::max( 1, np-nneg+2 );
268 switch( ncht )
269 {
270 case 1:
271 if( G4UniformRand() < 0.5 )
272 currentParticle.SetDefinitionAndUpdateE( aLambda );
273 else
274 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
275 incidentHasChanged = true;
276 break;
277 case 2:
278 if( G4UniformRand() >= 0.5 )
279 {
280 if( G4UniformRand() < 0.5 )
281 currentParticle.SetDefinitionAndUpdateE( aLambda );
282 else
283 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
284 incidentHasChanged = true;
285 targetParticle.SetDefinitionAndUpdateE( aNeutron );
286 targetHasChanged = true;
287 }
288 break;
289 default:
290 targetParticle.SetDefinitionAndUpdateE( aNeutron );
291 targetHasChanged = true;
292 break;
293 }
294 }
295 else // target must be a neutron
296 {
297 counter = -1;
298 for( np=0; np<numSec/3 && ran>=excs; ++np )
299 {
300 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
301 {
302 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
303 {
304 if( ++counter < numMul )
305 {
306 nt = np+nneg+nz;
307 if( nt>0 && nt<=numSec )
308 {
309 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
310 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
311 if( std::fabs(dum) < 1.0 )
312 {
313 if( test >= 1.0e-10 )excs += dum*test;
314 }
315 else
316 excs += dum*test;
317 }
318 }
319 }
320 }
321 }
322 if( ran >= excs ) // 3 previous loops continued to the end
323 {
324 quasiElastic = true;
325 return;
326 }
327 np--; nneg--; nz--;
328 G4int ncht = std::max( 1, np-nneg+3 );
329 switch( ncht )
330 {
331 case 1:
332 if( G4UniformRand() < 0.5 )
333 currentParticle.SetDefinitionAndUpdateE( aLambda );
334 else
335 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
336 incidentHasChanged = true;
337 targetParticle.SetDefinitionAndUpdateE( aProton );
338 targetHasChanged = true;
339 break;
340 case 2:
341 if( G4UniformRand() < 0.5 )
342 {
343 if( G4UniformRand() < 0.5 )
344 currentParticle.SetDefinitionAndUpdateE( aLambda );
345 else
346 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
347 incidentHasChanged = true;
348 }
349 else
350 {
351 targetParticle.SetDefinitionAndUpdateE( aProton );
352 targetHasChanged = true;
353 }
354 break;
355 default:
356 break;
357 }
358 }
359
360 SetUpPions(np, nneg, nz, vec, vecLen);
361 return;
362}
363
364 /* end of file */
365
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4Lambda * Lambda()
Definition: G4Lambda.cc:107
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Proton * Proton()
Definition: G4Proton.cc:92
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:101
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77