Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermoreComptonModifiedModel Class Reference

#include <G4LivermoreComptonModifiedModel.hh>

+ Inheritance diagram for G4LivermoreComptonModifiedModel:

Public Member Functions

 G4LivermoreComptonModifiedModel (const G4ParticleDefinition *p=0, const G4String &nam="LivermoreModifiedCompton")
 
virtual ~G4LivermoreComptonModifiedModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)=0
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double tmax=DBL_MAX)=0
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector< G4EmElementSelector * > * GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
virtual G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectTargetAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4int SelectRandomAtomNumber (const G4Material *)
 
G4int SelectIsotopeNumber (const G4Element *)
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
G4VEmModelGetTripletModel ()
 
void SetTripletModel (G4VEmModel *)
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy) const
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetFluctuationFlag (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
void SetUseBaseMaterials (G4bool val)
 
G4bool UseBaseMaterials () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
const G4ElementGetCurrentElement () const
 
const G4IsotopeGetCurrentIsotope () const
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 
G4VEmModeloperator= (const G4VEmModel &right)=delete
 
 G4VEmModel (const G4VEmModel &)=delete
 

Protected Attributes

G4ParticleChangeForGammafParticleChange
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData
 
G4VParticleChangepParticleChange
 
G4PhysicsTablexSectionTable
 
const G4MaterialpBaseMaterial
 
const std::vector< G4double > * theDensityFactor
 
const std::vector< G4int > * theDensityIdx
 
size_t idxTable
 
G4bool lossFlucFlag
 
G4double inveplus
 
G4double pFactor
 

Additional Inherited Members

- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 

Detailed Description

Definition at line 47 of file G4LivermoreComptonModifiedModel.hh.

Constructor & Destructor Documentation

◆ G4LivermoreComptonModifiedModel()

G4LivermoreComptonModifiedModel::G4LivermoreComptonModifiedModel ( const G4ParticleDefinition p = 0,
const G4String nam = "LivermoreModifiedCompton" 
)

Definition at line 63 of file G4LivermoreComptonModifiedModel.cc.

65 :G4VEmModel(nam),fParticleChange(0),isInitialised(false),
66 scatterFunctionData(0),
67 crossSectionHandler(0),fAtomDeexcitation(0)
68{
69 verboseLevel=0 ;
70 // Verbosity scale:
71 // 0 = nothing
72 // 1 = warning for energy non-conservation
73 // 2 = details of energy budget
74 // 3 = calculation of cross sections, file openings, sampling of atoms
75 // 4 = entering in methods
76
77 if( verboseLevel>0 )
78 G4cout << "Livermore Modified Compton model is constructed " << G4endl;
79
80 //Mark this model as "applicable" for atomic deexcitation
82
83}
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:813

◆ ~G4LivermoreComptonModifiedModel()

G4LivermoreComptonModifiedModel::~G4LivermoreComptonModifiedModel ( )
virtual

Definition at line 87 of file G4LivermoreComptonModifiedModel.cc.

88{
89 delete crossSectionHandler;
90 delete scatterFunctionData;
91}

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4LivermoreComptonModifiedModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition ,
G4double  kinEnergy,
G4double  Z,
G4double  A = 0,
G4double  cut = 0,
G4double  emax = DBL_MAX 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 148 of file G4LivermoreComptonModifiedModel.cc.

153{
154 if (verboseLevel > 3) {
155 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreComptonModifiedModel" << G4endl;
156 }
157 if (GammaEnergy < LowEnergyLimit())
158 { return 0.0; }
159
160 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
161 return cs;
162}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4double FindValue(G4int Z, G4double e) const
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652

◆ Initialise()

void G4LivermoreComptonModifiedModel::Initialise ( const G4ParticleDefinition particle,
const G4DataVector cuts 
)
virtual

Implements G4VEmModel.

Definition at line 95 of file G4LivermoreComptonModifiedModel.cc.

97{
98 if (verboseLevel > 2) {
99 G4cout << "Calling G4LivermoreComptonModifiedModel::Initialise()" << G4endl;
100 }
101
102 if (crossSectionHandler)
103 {
104 crossSectionHandler->Clear();
105 delete crossSectionHandler;
106 }
107 delete scatterFunctionData;
108
109 // Reading of data files - all materials are read
110 crossSectionHandler = new G4CrossSectionHandler;
111 G4String crossSectionFile = "comp/ce-cs-";
112 crossSectionHandler->LoadData(crossSectionFile);
113
114 G4VDataSetAlgorithm* scatterInterpolation = new G4LogLogInterpolation;
115 G4String scatterFile = "comp/ce-sf-";
116 scatterFunctionData = new G4CompositeEMDataSet(scatterInterpolation, 1., 1.);
117 scatterFunctionData->LoadData(scatterFile);
118
119 // For Doppler broadening
120 shellData.SetOccupancyData();
121 G4String file = "/doppler/shell-doppler";
122 shellData.LoadData(file);
123
124 InitialiseElementSelectors(particle,cuts);
125
126 if (verboseLevel > 2) {
127 G4cout << "Loaded cross section files for Livermore Modified Compton model" << G4endl;
128 }
129
130 if(isInitialised) { return; }
131 isInitialised = true;
132
134
135 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
136
137 if( verboseLevel>0 ) {
138 G4cout << "Livermore modified Compton model is initialized " << G4endl
139 << "Energy range: "
140 << LowEnergyLimit() / eV << " eV - "
141 << HighEnergyLimit() / GeV << " GeV"
142 << G4endl;
143 }
144}
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
void SetOccupancyData()
Definition: G4ShellData.hh:69
void LoadData(const G4String &fileName)
Definition: G4ShellData.cc:233
void LoadData(const G4String &dataFile)
virtual G4bool LoadData(const G4String &fileName)=0
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:645
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148

◆ SampleSecondaries()

void G4LivermoreComptonModifiedModel::SampleSecondaries ( std::vector< G4DynamicParticle * > *  fvect,
const G4MaterialCutsCouple couple,
const G4DynamicParticle aDynamicGamma,
G4double  tmin,
G4double  maxEnergy 
)
virtual

Implements G4VEmModel.

Definition at line 166 of file G4LivermoreComptonModifiedModel.cc.

170{
171
172 // The scattered gamma energy is sampled according to Klein - Nishina formula.
173 // then accepted or rejected depending on the Scattering Function multiplied
174 // by factor from Klein - Nishina formula.
175 // Expression of the angular distribution as Klein Nishina
176 // angular and energy distribution and Scattering fuctions is taken from
177 // D. E. Cullen "A simple model of photon transport" Nucl. Instr. Meth.
178 // Phys. Res. B 101 (1995). Method of sampling with form factors is different
179 // data are interpolated while in the article they are fitted.
180 // Reference to the article is from J. Stepanek New Photon, Positron
181 // and Electron Interaction Data for GEANT in Energy Range from 1 eV to 10
182 // TeV (draft).
183 // The random number techniques of Butcher & Messel are used
184 // (Nucl Phys 20(1960),15).
185
186 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
187
188 if (verboseLevel > 3) {
189 G4cout << "G4LivermoreComptonModifiedModel::SampleSecondaries() E(MeV)= "
190 << photonEnergy0/MeV << " in " << couple->GetMaterial()->GetName()
191 << G4endl;
192 }
193
194 // do nothing below the threshold
195 // should never get here because the XS is zero below the limit
196 if (photonEnergy0 < LowEnergyLimit())
197 return ;
198
199 G4double e0m = photonEnergy0 / electron_mass_c2 ;
200 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
201
202 // Select randomly one element in the current material
203 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
204 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
205 G4int Z = (G4int)elm->GetZ();
206
207 G4double epsilon0Local = 1. / (1. + 2. * e0m);
208 G4double epsilon0Sq = epsilon0Local * epsilon0Local;
209 G4double alpha1 = -G4Log(epsilon0Local);
210 G4double alpha2 = 0.5 * (1. - epsilon0Sq);
211
212 G4double wlPhoton = h_Planck*c_light/photonEnergy0;
213
214 // Sample the energy of the scattered photon
216 G4double epsilonSq;
217 G4double oneCosT;
218 G4double sinT2;
219 G4double gReject;
220
221 do
222 {
223 if ( alpha1/(alpha1+alpha2) > G4UniformRand())
224 {
225 // std::pow(epsilon0Local,G4UniformRand())
226 epsilon = G4Exp(-alpha1 * G4UniformRand());
227 epsilonSq = epsilon * epsilon;
228 }
229 else
230 {
231 epsilonSq = epsilon0Sq + (1. - epsilon0Sq) * G4UniformRand();
232 epsilon = std::sqrt(epsilonSq);
233 }
234
235 oneCosT = (1. - epsilon) / ( epsilon * e0m);
236 sinT2 = oneCosT * (2. - oneCosT);
237 G4double x = std::sqrt(oneCosT/2.) / (wlPhoton/cm);
238 G4double scatteringFunction = scatterFunctionData->FindValue(x,Z-1);
239 gReject = (1. - epsilon * sinT2 / (1. + epsilonSq)) * scatteringFunction;
240
241 } while(gReject < G4UniformRand()*Z);
242
243 G4double cosTheta = 1. - oneCosT;
244 G4double sinTheta = std::sqrt (sinT2);
245 G4double phi = twopi * G4UniformRand() ;
246 G4double dirx = sinTheta * std::cos(phi);
247 G4double diry = sinTheta * std::sin(phi);
248 G4double dirz = cosTheta ;
249
250 // Doppler broadening - Method based on:
251 // Y. Namito, S. Ban and H. Hirayama,
252 // "Implementation of the Doppler Broadening of a Compton-Scattered Photon
253 // into the EGS4 Code", NIM A 349, pp. 489-494, 1994
254
255 // Maximum number of sampling iterations
256 G4int maxDopplerIterations = 1000;
257 G4double bindingE = 0.;
258 G4double photonEoriginal = epsilon * photonEnergy0;
259 G4double photonE = -1.;
260 G4int iteration = 0;
261 G4double systemE = 0;
262 G4double ePAU = -1;
263 G4int shellIdx = 0;
264 G4double vel_c = 299792458;
265 G4double momentum_au_to_nat = 1.992851740*std::pow(10.,-24.);
266 G4double e_mass_kg = 9.10938188 * std::pow(10.,-31.);
267 G4double eMax = -1;
268 G4double Alpha=0;
269 do
270 {
271 ++iteration;
272 // Select shell based on shell occupancy
273 shellIdx = shellData.SelectRandomShell(Z);
274 bindingE = shellData.BindingEnergy(Z,shellIdx);
275
276
277
278 // Randomly sample bound electron momentum
279 // (memento: the data set is in Atomic Units)
280 G4double pSample = profileData.RandomSelectMomentum(Z,shellIdx);
281 // Rescale from atomic units
282
283
284 //Kinetic energy of target electron
285
286
287 // Reverse vector projection onto scattering vector
288
289 do {
290 Alpha = G4UniformRand()*pi/2.0;
291 } while(Alpha >= (pi/2.0));
292
293 ePAU = pSample / std::cos(Alpha);
294
295 // Convert to SI and the calculate electron energy in natural units
296
297 G4double ePSI = ePAU * momentum_au_to_nat;
298 G4double u_temp = sqrt( ((ePSI*ePSI)*(vel_c*vel_c)) / ((e_mass_kg*e_mass_kg)*(vel_c*vel_c)+(ePSI*ePSI)))/vel_c;
299 G4double eEIncident = electron_mass_c2 / sqrt( 1 - (u_temp*u_temp));
300
301 //Total energy of the system
302 systemE = eEIncident+photonEnergy0;
303
304 eMax = systemE - bindingE - electron_mass_c2;
305 G4double pDoppler = pSample * fine_structure_const;
306 G4double pDoppler2 = pDoppler * pDoppler;
307 G4double var2 = 1. + oneCosT * e0m;
308 G4double var3 = var2*var2 - pDoppler2;
309 G4double var4 = var2 - pDoppler2 * cosTheta;
310 G4double var = var4*var4 - var3 + pDoppler2 * var3;
311 if (var > 0.)
312 {
313 G4double varSqrt = std::sqrt(var);
314 G4double scale = photonEnergy0 / var3;
315 // Random select either root
316 if (G4UniformRand() < 0.5) { photonE = (var4 - varSqrt) * scale; }
317 else { photonE = (var4 + varSqrt) * scale; }
318 }
319 else
320 {
321 photonE = -1.;
322 }
323 } while ( iteration <= maxDopplerIterations &&
324 (photonE < 0. || photonE > eMax ) );
325
326 // End of recalculation of photon energy with Doppler broadening
327 // Kinematics of the scattered electron
328 G4double eKineticEnergy = systemE - photonE - bindingE - electron_mass_c2;
329
330 // protection against negative final energy: no e- is created
331 G4double eDirX = 0.0;
332 G4double eDirY = 0.0;
333 G4double eDirZ = 1.0;
334
335 if(eKineticEnergy < 0.0) {
336 G4cout << "Error, kinetic energy of electron less than zero" << G4endl;
337 }
338
339 else{
340 // Estimation of Compton electron polar angle taken from:
341 // The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport
342 // Eqn 2.2.25 Pg 42, NRCC Report PIRS-701
343 G4double E_num = photonEnergy0 - photonE*cosTheta;
344 G4double E_dom = sqrt(photonEnergy0*photonEnergy0 + photonE*photonE -2*photonEnergy0*photonE*cosTheta);
345 G4double cosThetaE = E_num / E_dom;
346 G4double sinThetaE = -sqrt((1. - cosThetaE) * (1. + cosThetaE));
347
348 eDirX = sinThetaE * std::cos(phi);
349 eDirY = sinThetaE * std::sin(phi);
350 eDirZ = cosThetaE;
351
352 G4ThreeVector eDirection(eDirX,eDirY,eDirZ);
353 eDirection.rotateUz(photonDirection0);
355 eDirection,eKineticEnergy) ;
356 fvect->push_back(dp);
357 }
358
359
360 // Revert to original if maximum number of iterations threshold has been reached
361
362 if (iteration >= maxDopplerIterations)
363 {
364 photonE = photonEoriginal;
365 bindingE = 0.;
366 }
367
368 // Update G4VParticleChange for the scattered photon
369
370 G4ThreeVector photonDirection1(dirx,diry,dirz);
371 photonDirection1.rotateUz(photonDirection0);
372 fParticleChange->ProposeMomentumDirection(photonDirection1) ;
373
374 G4double photonEnergy1 = photonE;
375
376 if (photonEnergy1 > 0.)
377 {
379
380 if (iteration < maxDopplerIterations)
381 {
382 G4ThreeVector eDirection(eDirX,eDirY,eDirZ);
383 eDirection.rotateUz(photonDirection0);
385 eDirection,eKineticEnergy) ;
386 fvect->push_back(dp);
387 }
388 }
389 else
390 {
391 photonEnergy1 = 0.;
394 }
395
396 // sample deexcitation
397 //
398 if(fAtomDeexcitation && iteration < maxDopplerIterations) {
399 G4int index = couple->GetIndex();
400 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
401 size_t nbefore = fvect->size();
403 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
404 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
405 size_t nafter = fvect->size();
406 if(nafter > nbefore) {
407 for (size_t i=nbefore; i<nafter; ++i) {
408 bindingE -= ((*fvect)[i])->GetKineticEnergy();
409 }
410 }
411 }
412 }
413 if(bindingE < 0.0) { bindingE = 0.0; }
415}
G4AtomicShellEnumerator
double epsilon(double density, double temperature)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
@ fStopAndKill
#define G4UniformRand()
Definition: Randomize.hh:52
G4double RandomSelectMomentum(G4int Z, G4int shellIndex) const
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double GetZ() const
Definition: G4Element.hh:130
const G4Material * GetMaterial() const
const G4String & GetName() const
Definition: G4Material.hh:175
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double BindingEnergy(G4int Z, G4int shellIndex) const
Definition: G4ShellData.cc:165
G4int SelectRandomShell(G4int Z) const
Definition: G4ShellData.cc:362
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:570
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
const G4double pi

Member Data Documentation

◆ fParticleChange

G4ParticleChangeForGamma* G4LivermoreComptonModifiedModel::fParticleChange
protected

Definition at line 74 of file G4LivermoreComptonModifiedModel.hh.

Referenced by Initialise(), and SampleSecondaries().


The documentation for this class was generated from the following files: