78 fData = fMaster =
false;
91 outFile <<
"G4NuElNucleusNcModel is a neutrino-nucleus (neutral current) scattering\n"
92 <<
"model which uses the standard model \n"
93 <<
"transfer parameterization. The model is fully relativistic\n";
105 G4int nSize(0), i(0), j(0), k(0);
109#ifdef G4MULTITHREADED
115#ifdef G4MULTITHREADED
123 char* path = getenv(
"G4PARTICLEXSDATA");
124 std::ostringstream ost1, ost2, ost3, ost4;
125 ost1 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/xarraynckr";
127 std::ifstream filein1( ost1.str().c_str() );
133 for( k = 0; k <
fNbin; ++k )
135 for( i = 0; i <=
fNbin; ++i )
143 ost2 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/xdistrnckr";
144 std::ifstream filein2( ost2.str().c_str() );
148 for( k = 0; k <
fNbin; ++k )
150 for( i = 0; i <
fNbin; ++i )
158 ost3 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/q2arraynckr";
159 std::ifstream filein3( ost3.str().c_str() );
163 for( k = 0; k <
fNbin; ++k )
165 for( i = 0; i <=
fNbin; ++i )
167 for( j = 0; j <=
fNbin; ++j )
176 ost4 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/q2distrnckr";
177 std::ifstream filein4( ost4.str().c_str() );
181 for( k = 0; k <
fNbin; ++k )
183 for( i = 0; i <=
fNbin; ++i )
185 for( j = 0; j <
fNbin; ++j )
258 G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.);
264 G4int pdgP(0), qB(0);
276 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
278 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
281 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
297 if ( lvX.
e() <=
fM1 )
320 eCut = (
fMpi + mTarg)*(
fMpi + mTarg) - (massX + massR)*(massX + massR);
326 if ( lvX.
e() > eCut )
344 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
346 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
348 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
424 fMr = proton_mass_c2;
450 if (
fProton && pName ==
"nu_e" ) qB = 1;
451 else if( !
fProton && pName ==
"nu_e" ) qB = 0;
472 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.
AtomicMass(
A,Z);
473 G4double cost(1.), sint(0.), phi(0.), muMom(0.);
479 if(
A == 1 || nMom == 0. )
511 while( ( abs(
fCosTheta) > 1. ||
fEmu < fMnumu ) && iTer < iTerMax );
513 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
528 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
530 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
531 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
598 while( ( abs(
fCosTheta) > 1. ||
fEmu < fMnumu ) && iTer < iTerMax );
600 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
614 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
616 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
617 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
double A(double temperature)
CLHEP::HepLorentzVector G4LorentzVector
G4ThreeVector G4RandomDirection()
#define G4MUTEX_INITIALIZER
#define G4MUTEXLOCK(mutex)
#define G4MUTEXUNLOCK(mutex)
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4NeutrinoE * NeutrinoE()
void CoherentPion(G4LorentzVector &lvP, G4int pdgP, G4Nucleus &targetNucleus)
static G4double fNuMuQarrayKR[50][51][51]
static G4double fNuMuXarrayKR[50][51]
G4double NucleonMomentum(G4Nucleus &targetNucleus)
G4int GetOnePionIndex(G4double energy)
G4double SampleXkr(G4double energy)
G4double SampleQkr(G4double energy, G4double xx)
G4double GetNuMuQeTotRat(G4int index, G4double energy)
G4int GetEnergyIndex(G4double energy)
G4double GetNuMuOnePionProb(G4int index, G4double energy)
static G4double fNuMuXdistrKR[50][50]
static G4double fNuMuQdistrKR[50][51][50]
void ClusterDecay(G4LorentzVector &lvX, G4int qX)
void FinalBarion(G4LorentzVector &lvB, G4int qB, G4int pdgB)
void SampleLVkr(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual ~G4NuElNucleusNcModel()
virtual void ModelDescription(std::ostream &) const
virtual G4bool IsApplicable(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4NuElNucleusNcModel(const G4String &name="NuMuNuclNcModel")
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetMinNuElEnergy()
virtual void InitialiseModel()
G4double AtomicMass(const G4double A, const G4double Z) const
G4double GetPDGMass() const
const G4String & GetParticleName() const
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()