Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLNuclearDensity.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
40#include "G4INCLGlobals.hh"
41#include <algorithm>
42
43namespace G4INCL {
44
45 NuclearDensity::NuclearDensity(const G4int A, const G4int Z, const G4int S, InterpolationTable const * const rpCorrelationTableProton, InterpolationTable const * const rpCorrelationTableNeutron, InterpolationTable const * const rpCorrelationTableLambda) :
46 theA(A),
47 theZ(Z),
48 theS(S),
49 theMaximumRadius(std::min((*rpCorrelationTableProton)(1.), (*rpCorrelationTableNeutron)(1.))),
50 theProtonNuclearRadius(ParticleTable::getNuclearRadius(Proton,theA,theZ))
51 {
52 std::fill(rFromP, rFromP + UnknownParticle, static_cast<InterpolationTable*>(NULL));
53 rFromP[Proton] = rpCorrelationTableProton;
54 rFromP[Neutron] = rpCorrelationTableNeutron;
55 rFromP[Lambda] = rpCorrelationTableLambda;
56 rFromP[DeltaPlusPlus] = rpCorrelationTableProton;
57 rFromP[DeltaPlus] = rpCorrelationTableProton;
58 rFromP[DeltaZero] = rpCorrelationTableNeutron;
59 rFromP[DeltaMinus] = rpCorrelationTableNeutron;
60 // The interpolation table for local-energy look-ups is simply obtained by
61 // inverting the r-p correlation table.
62 std::fill(pFromR, pFromR + UnknownParticle, static_cast<InterpolationTable*>(NULL));
63 pFromR[Proton] = new InterpolationTable(rFromP[Proton]->getNodeValues(), rFromP[Proton]->getNodeAbscissae());
64 pFromR[Neutron] = new InterpolationTable(rFromP[Neutron]->getNodeValues(), rFromP[Neutron]->getNodeAbscissae());
65 pFromR[Lambda] = new InterpolationTable(rFromP[Lambda]->getNodeValues(), rFromP[Lambda]->getNodeAbscissae());
66 pFromR[DeltaPlusPlus] = new InterpolationTable(rFromP[DeltaPlusPlus]->getNodeValues(), rFromP[DeltaPlusPlus]->getNodeAbscissae());
67 pFromR[DeltaPlus] = new InterpolationTable(rFromP[DeltaPlus]->getNodeValues(), rFromP[DeltaPlus]->getNodeAbscissae());
68 pFromR[DeltaZero] = new InterpolationTable(rFromP[DeltaZero]->getNodeValues(), rFromP[DeltaZero]->getNodeAbscissae());
69 pFromR[DeltaMinus] = new InterpolationTable(rFromP[DeltaMinus]->getNodeValues(), rFromP[DeltaMinus]->getNodeAbscissae());
70 INCL_DEBUG("Interpolation table for proton local energy (A=" << theA << ", Z=" << theZ << ") initialised:"
71 << '\n'
72 << pFromR[Proton]->print()
73 << '\n'
74 << "Interpolation table for neutron local energy (A=" << theA << ", Z=" << theZ << ") initialised:"
75 << '\n'
76 << pFromR[Neutron]->print()
77 << '\n'
78 << "Interpolation table for lambda local energy (A=" << theA << ", Z=" << theZ << ", S=" << theS << ") initialised:"
79 << '\n'
80 << pFromR[Lambda]->print()
81 << '\n'
82 << "Interpolation table for delta++ local energy (A=" << theA << ", Z=" << theZ << ") initialised:"
83 << '\n'
84 << pFromR[DeltaPlusPlus]->print()
85 << '\n'
86 << "Interpolation table for delta+ local energy (A=" << theA << ", Z=" << theZ << ") initialised:"
87 << '\n'
88 << pFromR[DeltaPlus]->print()
89 << '\n'
90 << "Interpolation table for delta0 local energy (A=" << theA << ", Z=" << theZ << ") initialised:"
91 << '\n'
92 << pFromR[DeltaZero]->print()
93 << '\n'
94 << "Interpolation table for delta- local energy (A=" << theA << ", Z=" << theZ << ") initialised:"
95 << '\n'
96 << pFromR[DeltaMinus]->print()
97 << '\n');
98 initializeTransmissionRadii();
99 }
100
102 // We don't delete the rFromP tables, which are cached in the
103 // NuclearDensityFactory
104 delete pFromR[Proton];
105 delete pFromR[Neutron];
106 delete pFromR[Lambda];
107 delete pFromR[DeltaPlusPlus];
108 delete pFromR[DeltaPlus];
109 delete pFromR[DeltaZero];
110 delete pFromR[DeltaMinus];
111 }
112
114 theA(rhs.theA),
115 theZ(rhs.theZ),
116 theS(rhs.theS),
117 theMaximumRadius(rhs.theMaximumRadius),
118 theProtonNuclearRadius(rhs.theProtonNuclearRadius)
119 {
120 // rFromP is owned by NuclearDensityFactory, so shallow copy is sufficient
121 std::fill(rFromP, rFromP + UnknownParticle, static_cast<InterpolationTable*>(NULL));
122 rFromP[Proton] = rhs.rFromP[Proton];
123 rFromP[Neutron] = rhs.rFromP[Neutron];
124 rFromP[Lambda] = rhs.rFromP[Lambda];
125 rFromP[DeltaPlusPlus] = rhs.rFromP[DeltaPlusPlus];
126 rFromP[DeltaPlus] = rhs.rFromP[DeltaPlus];
127 rFromP[DeltaZero] = rhs.rFromP[DeltaZero];
128 rFromP[DeltaMinus] = rhs.rFromP[DeltaMinus];
129 // deep copy for pFromR
130 std::fill(pFromR, pFromR + UnknownParticle, static_cast<InterpolationTable*>(NULL));
131 pFromR[Proton] = new InterpolationTable(*(rhs.pFromR[Proton]));
132 pFromR[Neutron] = new InterpolationTable(*(rhs.pFromR[Neutron]));
133 pFromR[Lambda] = new InterpolationTable(*(rhs.pFromR[Lambda]));
134 pFromR[DeltaPlusPlus] = new InterpolationTable(*(rhs.pFromR[DeltaPlusPlus]));
135 pFromR[DeltaPlus] = new InterpolationTable(*(rhs.pFromR[DeltaPlus]));
136 pFromR[DeltaZero] = new InterpolationTable(*(rhs.pFromR[DeltaZero]));
137 pFromR[DeltaMinus] = new InterpolationTable(*(rhs.pFromR[DeltaMinus]));
138 std::copy(rhs.transmissionRadius, rhs.transmissionRadius+UnknownParticle, transmissionRadius);
139 }
140
142 NuclearDensity temporaryDensity(rhs);
143 swap(temporaryDensity);
144 return *this;
145 }
146
148 std::swap(theA, rhs.theA);
149 std::swap(theZ, rhs.theZ);
150 std::swap(theS, rhs.theS);
151 std::swap(theMaximumRadius, rhs.theMaximumRadius);
152 std::swap(theProtonNuclearRadius, rhs.theProtonNuclearRadius);
153 std::swap_ranges(transmissionRadius, transmissionRadius+UnknownParticle, rhs.transmissionRadius);
154 std::swap(rFromP[Proton], rhs.rFromP[Proton]);
155 std::swap(rFromP[Neutron], rhs.rFromP[Neutron]);
156 std::swap(rFromP[Lambda], rhs.rFromP[Lambda]);
157 std::swap(rFromP[DeltaPlusPlus], rhs.rFromP[DeltaPlusPlus]);
158 std::swap(rFromP[DeltaPlus], rhs.rFromP[DeltaPlus]);
159 std::swap(rFromP[DeltaZero], rhs.rFromP[DeltaZero]);
160 std::swap(rFromP[DeltaMinus], rhs.rFromP[DeltaMinus]);
161 std::swap(pFromR[Proton], rhs.pFromR[Proton]);
162 std::swap(pFromR[Neutron], rhs.pFromR[Neutron]);
163 std::swap(pFromR[DeltaPlusPlus], rhs.pFromR[DeltaPlusPlus]);
164 std::swap(pFromR[DeltaPlus], rhs.pFromR[DeltaPlus]);
165 std::swap(pFromR[DeltaZero], rhs.pFromR[DeltaZero]);
166 std::swap(pFromR[DeltaMinus], rhs.pFromR[DeltaMinus]);
167 }
168
169 void NuclearDensity::initializeTransmissionRadii() {
170 const G4double theProtonRadius = 0.88; // fm
171 const G4double theProtonTransmissionRadius = theProtonNuclearRadius + theProtonRadius;
172
173 transmissionRadius[Proton] = theProtonTransmissionRadius;
174 transmissionRadius[PiPlus] = theProtonNuclearRadius;
175 transmissionRadius[PiMinus] = theProtonNuclearRadius;
176 transmissionRadius[DeltaPlusPlus] = theProtonTransmissionRadius;
177 transmissionRadius[DeltaPlus] = theProtonTransmissionRadius;
178 transmissionRadius[DeltaMinus] = theProtonTransmissionRadius;
179 transmissionRadius[Composite] = theProtonNuclearRadius;
180 transmissionRadius[SigmaPlus] = theProtonTransmissionRadius;
181 transmissionRadius[SigmaMinus] = theProtonTransmissionRadius;
182 transmissionRadius[KPlus] = theProtonNuclearRadius;
183 transmissionRadius[KMinus] = theProtonNuclearRadius;
184
185 // transmission radii for neutral particles intentionally left uninitialised
186 }
187
189// assert(t==Proton || t==Neutron || t==Lambda || t==DeltaPlusPlus || t==DeltaPlus || t==DeltaZero || t==DeltaMinus);
190 return (*(rFromP[t]))(p);
191 }
192
194// assert(t==Proton || t==Neutron || t==Lambda || t==DeltaPlusPlus || t==DeltaPlus || t==DeltaZero || t==DeltaMinus);
195 return (*(pFromR[t]))(r);
196 }
197
198}
double S(double temp)
double A(double temperature)
#define INCL_DEBUG(x)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
void print(G4double elem)
Class for interpolating the of a 1-dimensional function.
void swap(NuclearDensity &rhs)
Helper method for the assignment operator.
NuclearDensity & operator=(const NuclearDensity &rhs)
Assignment operator.
G4double getMinPFromR(const ParticleType t, const G4double r) const
G4double getMaxRFromP(const ParticleType t, const G4double p) const
Get the maximum allowed radius for a given momentum.
NuclearDensity(const G4int A, const G4int Z, const G4int S, InterpolationTable const *const rpCorrelationTableProton, InterpolationTable const *const rpCorrelationTableNeutron, InterpolationTable const *const rpCorrelationTableLambda)