Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4UCNAbsorption.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27///////////////////////////////////////////////////////////////////////
28// UCN Absorption Class Implementation
29///////////////////////////////////////////////////////////////////////
30//
31// File: G4UCNAbsorption.cc
32// Description: Discrete Process -- Absorption of Ultra Cold Neutrons
33// Version: 1.0
34// Created: 2014-05-12
35// Author: Peter Gumplinger
36// adopted from Geant4UCN by Peter Fierlinger (7.9.04) and
37// Marcin Kuzniak (21.4.06)
38// 1/v energy dependent absorption cross section
39// inside materials
40// Updated:
41//
42// mail: [email protected]
43//
44///////////////////////////////////////////////////////////////////////
45
47
48#include "G4UCNAbsorption.hh"
49
50//#include "G4Nucleus.hh"
51//#include "G4ReactionProduct.hh"
52//#include "G4NucleiPropertiesTable.hh"
53
54#include "G4SystemOfUnits.hh"
56
57/////////////////////////
58// Class Implementation
59/////////////////////////
60
61 //////////////
62 // Operators
63 //////////////
64
65// G4UCNAbsorption::operator=(const G4UCNAbsorption &right)
66// {
67// }
68
69 /////////////////
70 // Constructors
71 /////////////////
72
74 : G4VDiscreteProcess(processName, type)
75{
76 if (verboseLevel>0) G4cout << GetProcessName() << " is created " << G4endl;
77
79}
80
81// G4UCNAbsorption::G4UCNAbsorption(const G4UCNAbsorpton &right)
82// {
83// }
84
85 ////////////////
86 // Destructors
87 ////////////////
88
90
91 ////////////
92 // Methods
93 ////////////
94
95// PostStepDoIt
96// -------------
97
99G4UCNAbsorption::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
100{
102
104
105 if ( verboseLevel > 0 ) G4cout << "UCNABSORPTION at: "
106 << aTrack.GetProperTime()/s << "s, "
107 << aTrack.GetGlobalTime()/s << "s. "
108 << ", after track length " << aTrack.GetTrackLength()/cm << "cm, "
109 << "in volume "
111 << G4endl;
112
113 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
114}
115
116// GetMeanFreePath
117// ---------------
118
120 G4double ,
122{
123 G4double AttenuationLength = DBL_MAX;
124
125 const G4Material* aMaterial = aTrack.GetMaterial();
126 G4MaterialPropertiesTable* aMaterialPropertiesTable =
127 aMaterial->GetMaterialPropertiesTable();
128
129 G4double losscs = 0.0;
130 if (aMaterialPropertiesTable) {
131 losscs = aMaterialPropertiesTable->GetConstProperty("ABSCS");
132// if (losscs == 0.0)
133// G4cout << "No UCN Absorption length specified" << G4endl;
134 }
135// else G4cout << "No UCN Absorption length specified" << G4endl;
136
137 if (losscs) {
138
139 // Calculate a UCN absorption length for this cross section
140
141 // *** Thermal boost ***
142
143 // Prepare neutron
144
145 //G4double theA = aMaterial->GetElement(0)->GetN();
146 //G4double theZ = aMaterial->GetElement(0)->GetZ();
147
148 //G4ReactionProduct
149 // theNeutron(const_cast<G4ParticleDefinition *>(aTrack.GetDefinition()));
150 //theNeutron.SetMomentum(aTrack.GetMomentum());
151 //theNeutron.SetKineticEnergy(aTrack.GetKineticEnergy());
152 //G4ThreeVector neuVelo = theNeutron.GetMomentum()/
153 // aTrack.GetDefinition()->GetPDGMass());
154
155 // Prepare properly biased thermal nucleus
156
157 //G4double theA = aMaterial->GetElement(0)->GetN();
158 //G4double theZ = aMaterial->GetElement(0)->GetZ();
159
160 //G4double eps = 0.0001;
161
162 //G4double eleMass =
163 // G4NucleiPropertiesTable::
164 // GetNuclearMass(static_cast<G4int>(theZ+eps),
165 // static_cast<G4int>(theA+eps)))
166 // / G4Neutron::Neutron()->GetPDGMass();
167
168 //G4Nucleus aNuc;
169
170 //G4ReactionProduct aThermalNuc =
171 // aNuc.GetBiasedThermalNucleus(eleMass,
172 // neuVelo,
173 // aMaterial->GetTemperature());
174
175 // Boost to rest system and return
176
177 //G4ReactionProduct boosted;
178 //boosted.Lorentz(theNeutron, aThermalNuc);
179
180 //G4double vel = sqrt(2*boosted.GetKineticEnergy()/
181 // neutron_mass_c2*c_squared);
182
183 G4double density = aMaterial->GetTotNbOfAtomsPerVolume();
184
185 // Calculate cross section for a constant loss
186
187 G4double vel = aTrack.GetVelocity();
188
189 //G4cout << aTrack.GetVelocity()/meter*second << " "
190 // << vel/meter*second << "meters/second" << G4endl;
191
192 // Input data is normally taken from the website:
193 // http://rrdjazz.nist.gov/resources/n-lengths/list.html
194 // and coresponds to 2200 m/s fast neutrons
195
196 G4double crossect = losscs*barn*2200.*meter/second/vel;
197
198 // In principle, if one asks for the MaterialProperty incoherent cross
199 // section, one could put the formula for inelastic up scattering here
200 // and add the cross section to the absorption
201
202 // sigma inelastic = ... ignatovic, p. 174.
203
204 // attenuation length in mm
205 AttenuationLength = 1./density/crossect;
206
207 if (verboseLevel>0) G4cout << "UCNABSORPTION with"
208 << " AttenuationLength: " << AttenuationLength/m << "m"
209 << " CrossSection: " << crossect/barn << "barn" << G4endl;
210 }
211
212 return AttenuationLength;
213}
G4ForceCondition
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
@ fUCNAbsorption
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double GetConstProperty(const G4String &key) const
G4MaterialPropertiesTable * GetMaterialPropertiesTable() const
Definition: G4Material.hh:254
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:207
virtual void Initialize(const G4Track &)
G4VPhysicalVolume * GetPhysicalVolume() const
Definition: G4Step.hh:62
G4StepPoint * GetPostStepPoint() const
G4double GetVelocity() const
G4double GetTrackLength() const
G4double GetGlobalTime() const
G4double GetProperTime() const
G4Material * GetMaterial() const
G4double GetMeanFreePath(const G4Track &aTrack, G4double, G4ForceCondition *condition)
virtual ~G4UCNAbsorption()
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
G4UCNAbsorption(const G4String &processName="UCNAbsorption", G4ProcessType type=fUCN)
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
const G4String & GetName() const
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:327
G4int verboseLevel
Definition: G4VProcess.hh:356
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:406
const G4String & GetProcessName() const
Definition: G4VProcess.hh:382
#define DBL_MAX
Definition: templates.hh:62