Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ICRU73QOModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4ICRU73QOModel
33//
34// Author: Alexander Bagulya
35//
36// Creation date: 21.05.2010
37//
38// Modifications:
39//
40//
41// -------------------------------------------------------------------
42//
43
44
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
46//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
47
48#include "G4ICRU73QOModel.hh"
50#include "G4SystemOfUnits.hh"
51#include "Randomize.hh"
52#include "G4Electron.hh"
54#include "G4LossTableManager.hh"
55#include "G4AntiProton.hh"
56#include "G4DeltaAngle.hh"
57#include "G4Log.hh"
58#include "G4Exp.hh"
59
60//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
61
62using namespace std;
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
65
67 : G4VEmModel(nam),
68 particle(nullptr),
69 isInitialised(false)
70{
71 mass = charge = chargeSquare = massRate = ratio = 0.0;
72 if(p) { SetParticle(p); }
73 SetHighEnergyLimit(10.0*MeV);
74
75 lowestKinEnergy = 5.0*keV;
76
77 sizeL0 = 67;
78 sizeL1 = 22;
79 sizeL2 = 14;
80
81 theElectron = G4Electron::Electron();
82
83 for (G4int i = 0; i < 100; ++i)
84 {
85 indexZ[i] = -1;
86 }
87 for(G4int i = 0; i < NQOELEM; ++i)
88 {
89 if(ZElementAvailable[i] > 0) {
90 indexZ[ZElementAvailable[i]] = i;
91 }
92 }
93 fParticleChange = nullptr;
94 denEffData = nullptr;
95}
96
97//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
98
100 const G4DataVector&)
101{
102 if(p != particle) SetParticle(p);
103
104 // always false before the run
105 SetDeexcitationFlag(false);
106
107 if(!isInitialised) {
108 isInitialised = true;
109
112 }
113
114 G4String pname = particle->GetParticleName();
115 fParticleChange = GetParticleChangeForLoss();
117 denEffData = (*mtab)[0]->GetIonisation()->GetDensityEffectData();
118 }
119}
120
121//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
122
124 const G4ParticleDefinition* p,
125 G4double kineticEnergy,
126 G4double cutEnergy,
127 G4double maxKinEnergy)
128{
129 G4double cross = 0.0;
130 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
131 G4double maxEnergy = std::min(tmax,maxKinEnergy);
132 if(cutEnergy < maxEnergy) {
133
134 G4double energy = kineticEnergy + mass;
135 G4double energy2 = energy*energy;
136 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
137 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy)
138 - beta2*G4Log(maxEnergy/cutEnergy)/tmax;
139
140 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2;
141 }
142
143 return cross;
144}
145
146//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
147
149 const G4ParticleDefinition* p,
150 G4double kineticEnergy,
152 G4double cutEnergy,
153 G4double maxEnergy)
154{
156 (p,kineticEnergy,cutEnergy,maxEnergy);
157 return cross;
158}
159
160//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
161
163 const G4Material* material,
164 const G4ParticleDefinition* p,
165 G4double kineticEnergy,
166 G4double cutEnergy,
167 G4double maxEnergy)
168{
169 G4double eDensity = material->GetElectronDensity();
171 (p,kineticEnergy,cutEnergy,maxEnergy);
172 return cross;
173}
174
175//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
176
178 const G4ParticleDefinition* p,
179 G4double kineticEnergy,
180 G4double cutEnergy)
181{
182 SetParticle(p);
183 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
184 G4double tkin = kineticEnergy/massRate;
185 G4double dedx = 0.0;
186 if(tkin > lowestKinEnergy) { dedx = DEDX(material, tkin); }
187 else { dedx = DEDX(material, lowestKinEnergy)*sqrt(tkin/lowestKinEnergy); }
188
189 if (cutEnergy < tmax) {
190
191 G4double tau = kineticEnergy/mass;
192 G4double gam = tau + 1.0;
193 G4double bg2 = tau * (tau+2.0);
194 G4double beta2 = bg2/(gam*gam);
195 G4double x = cutEnergy/tmax;
196
197 dedx += chargeSquare*( G4Log(x) + (1.0 - x)*beta2 ) * twopi_mc2_rcl2
198 * material->GetElectronDensity()/beta2;
199 }
200 if(dedx < 0.0) { dedx = 0.0; }
201 return dedx;
202}
203
204//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
205
206G4double G4ICRU73QOModel::DEDX(const G4Material* material,
207 G4double kineticEnergy)
208{
209 G4double eloss = 0.0;
210 const G4int numberOfElements = material->GetNumberOfElements();
211 const G4double* theAtomicNumDensityVector =
212 material->GetAtomicNumDensityVector();
213
214 // Bragg's rule calculation
215 const G4ElementVector* theElementVector =
216 material->GetElementVector() ;
217
218 // loop for the elements in the material
219 for (G4int i=0; i<numberOfElements; ++i)
220 {
221 const G4Element* element = (*theElementVector)[i] ;
222 eloss += DEDXPerElement(element->GetZasInt(), kineticEnergy)
223 * theAtomicNumDensityVector[i] * element->GetZ();
224 }
225 return eloss;
226}
227
228//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
229
230G4double G4ICRU73QOModel::DEDXPerElement(G4int AtomicNumber,
231 G4double kineticEnergy)
232{
233 G4int Z = std::min(AtomicNumber, 97);
234 G4int nbOfShells = std::max(GetNumberOfShells(Z), 1);
235
236 G4double v = CLHEP::c_light * std::sqrt( 2.0*kineticEnergy/proton_mass_c2 );
237
238 G4double fBetheVelocity = CLHEP::fine_structure_const*CLHEP::c_light/v;
239
240 G4double tau = kineticEnergy/proton_mass_c2;
241 G4double gam = tau + 1.0;
242 G4double bg2 = tau * (tau+2.0);
243 G4double beta2 = bg2/(gam*gam);
244
245 G4double l0Term = 0, l1Term = 0, l2Term = 0;
246
247 for (G4int nos = 0; nos < nbOfShells; ++nos){
248
249 G4double NormalizedEnergy = (2.0*CLHEP::electron_mass_c2*beta2) /
250 GetShellEnergy(Z,nos);
251
252 G4double shStrength = GetShellStrength(Z,nos);
253
254 G4double l0 = GetL0(NormalizedEnergy);
255 l0Term += shStrength * l0;
256
257 G4double l1 = GetL1(NormalizedEnergy);
258 l1Term += shStrength * l1;
259
260 G4double l2 = GetL2(NormalizedEnergy);
261 l2Term += shStrength * l2;
262
263 }
264 G4double dedx = 2*CLHEP::twopi_mc2_rcl2*chargeSquare*factorBethe[Z]*
265 (l0Term + charge*fBetheVelocity*l1Term
266 + chargeSquare*fBetheVelocity*fBetheVelocity*l2Term)/beta2;
267 return dedx;
268}
269
270
271//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
272
273G4double G4ICRU73QOModel::GetOscillatorEnergy(G4int Z,
274 G4int nbOfTheShell) const
275{
276 G4int idx = denEffData->GetElementIndex(Z, kStateUndefined);
277 if(idx == -1) { idx = denEffData->GetElementIndex(Z-1, kStateUndefined); }
278 G4double PlasmaEnergy = denEffData->GetPlasmaEnergy(idx);
279
280 G4double PlasmaEnergy2 = PlasmaEnergy * PlasmaEnergy;
281
282 G4double plasmonTerm = 0.66667
283 * G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell)
284 * PlasmaEnergy2 / (Z*Z) ;
285
286 static const G4double exphalf = G4Exp(0.5);
287 G4double ionTerm = exphalf *
288 (G4AtomicShells::GetBindingEnergy(Z,nbOfTheShell)) ;
289 G4double ionTerm2 = ionTerm*ionTerm ;
290
291 G4double oscShellEnergy = std::sqrt( ionTerm2 + plasmonTerm );
292
293 return oscShellEnergy;
294}
295
296//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
297
298G4int G4ICRU73QOModel::GetNumberOfShells(G4int Z) const
299{
300 G4int nShell = 0;
301
302 if(indexZ[Z] >= 0) {
303 nShell = nbofShellsForElement[indexZ[Z]];
304 } else {
306 }
307 return nShell;
308}
309
310//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311
312G4double G4ICRU73QOModel::GetShellEnergy(G4int Z, G4int nbOfTheShell) const
313{
314 G4double shellEnergy = 0.;
315
316 G4int idx = indexZ[Z];
317
318 if(idx >= 0) {
319 shellEnergy = ShellEnergy[startElemIndex[idx] + nbOfTheShell]*CLHEP::eV;
320 } else {
321 shellEnergy = GetOscillatorEnergy(Z, nbOfTheShell);
322 }
323
324 return shellEnergy;
325}
326
327//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
328
329G4double G4ICRU73QOModel::GetShellStrength(G4int Z, G4int nbOfTheShell) const
330{
331 G4double shellStrength = 0.;
332
333 G4int idx = indexZ[Z];
334
335 if(idx >= 0) {
336 shellStrength = SubShellOccupation[startElemIndex[idx] + nbOfTheShell] / Z;
337 } else {
338 shellStrength = G4double(G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell))/Z;
339 }
340
341 return shellStrength;
342}
343
344//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
345
346G4double G4ICRU73QOModel::GetL0(G4double normEnergy) const
347{
348 G4int n;
349
350 for(n = 0; n < sizeL0; n++) {
351 if( normEnergy < L0[n][0] ) break;
352 }
353 if(0 == n) { n = 1; }
354 if(n >= sizeL0) { n = sizeL0 - 1; }
355
356 G4double l0 = L0[n][1];
357 G4double l0p = L0[n-1][1];
358 G4double bethe = l0p + (l0 - l0p) * ( normEnergy - L0[n-1][0]) /
359 (L0[n][0] - L0[n-1][0]);
360
361 return bethe ;
362}
363
364//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
365
366G4double G4ICRU73QOModel::GetL1(G4double normEnergy) const
367{
368 G4int n;
369
370 for(n = 0; n < sizeL1; n++) {
371 if( normEnergy < L1[n][0] ) break;
372 }
373 if(0 == n) n = 1 ;
374 if(n >= sizeL1) n = sizeL1 - 1 ;
375
376 G4double l1 = L1[n][1];
377 G4double l1p = L1[n-1][1];
378 G4double barkas= l1p + (l1 - l1p) * ( normEnergy - L1[n-1][0]) /
379 (L1[n][0] - L1[n-1][0]);
380
381 return barkas;
382}
383
384//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
385
386G4double G4ICRU73QOModel::GetL2(G4double normEnergy) const
387{
388 G4int n;
389 for(n = 0; n < sizeL2; n++) {
390 if( normEnergy < L2[n][0] ) break;
391 }
392 if(0 == n) n = 1 ;
393 if(n >= sizeL2) n = sizeL2 - 1 ;
394
395 G4double l2 = L2[n][1];
396 G4double l2p = L2[n-1][1];
397 G4double bloch = l2p + (l2 - l2p) * ( normEnergy - L2[n-1][0]) /
398 (L2[n][0] - L2[n-1][0]);
399
400 return bloch;
401}
402
403//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
404
406 const G4DynamicParticle*,
407 G4double&,
408 G4double&,
409 G4double)
410{}
411
412//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
413
414void G4ICRU73QOModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
415 const G4MaterialCutsCouple* couple,
416 const G4DynamicParticle* dp,
417 G4double xmin,
418 G4double maxEnergy)
419{
421 G4double xmax = std::min(tmax, maxEnergy);
422 if(xmin >= xmax) { return; }
423
424 G4double kineticEnergy = dp->GetKineticEnergy();
425 G4double energy = kineticEnergy + mass;
426 G4double energy2 = energy*energy;
427 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
428 G4double grej = 1.0;
429 G4double deltaKinEnergy, f;
430
431 G4ThreeVector direction = dp->GetMomentumDirection();
432
433 // sampling follows ...
434 do {
436 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - x) + xmax*x);
437
438 f = 1.0 - beta2*deltaKinEnergy/tmax;
439
440 if(f > grej) {
441 G4cout << "G4ICRU73QOModel::SampleSecondary Warning! "
442 << "Majorant " << grej << " < "
443 << f << " for e= " << deltaKinEnergy
444 << G4endl;
445 }
446
447 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
448 } while( grej*G4UniformRand() >= f );
449
450 G4ThreeVector deltaDirection;
451
453 const G4Material* mat = couple->GetMaterial();
455
456 deltaDirection =
457 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat);
458
459 } else {
460
461 G4double deltaMomentum =
462 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
463 G4double totMomentum = energy*sqrt(beta2);
464 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
465 (deltaMomentum * totMomentum);
466 if(cost > 1.0) { cost = 1.0; }
467 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
468
469 G4double phi = twopi * G4UniformRand() ;
470
471 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ;
472 deltaDirection.rotateUz(direction);
473 }
474 // create G4DynamicParticle object for delta ray
475 G4DynamicParticle* delta =
476 new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy);
477
478 // Change kinematics of primary particle
479 kineticEnergy -= deltaKinEnergy;
480 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum();
481 finalP = finalP.unit();
482
483 fParticleChange->SetProposedKineticEnergy(kineticEnergy);
484 fParticleChange->SetProposedMomentumDirection(finalP);
485
486 vdp->push_back(delta);
487}
488
489//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
490
492 G4double kinEnergy)
493{
494 if(pd != particle) { SetParticle(pd); }
495 G4double tau = kinEnergy/mass;
496 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) /
497 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio);
498 return tmax;
499}
500
501//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
502
503const G4int G4ICRU73QOModel::ZElementAvailable[NQOELEM] =
504 {1,2,4,6,7,8,10,13,14,-18,
505 22,26,28,29,32,36,42,47,
506 50,54,73,74,78,79,82,92};
507
508const G4int G4ICRU73QOModel::nbofShellsForElement[NQOELEM] =
509 {1,1,2,3,3,3,3,4,5,4,
510 5,5,5,5,6,4,6,6,
511 7,6,6,8,7,7,9,9};
512
513const G4int G4ICRU73QOModel::startElemIndex[NQOELEM] =
514 {0,1,2,4,7,10,13,16,20,25,
515 29,34,39,44,49,55,59,65,
516 71,78,84,90,98,105,112,121};
517
518//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
519
520// SubShellOccupation = Z * ShellStrength
521const G4double G4ICRU73QOModel::SubShellOccupation[NQODATA] =
522 {
523 1.000, // H 0
524 2.000, // He 1
525 1.930, 2.070, // Be 2-3
526 1.992, 1.841, 2.167, // C 4-6
527 1.741, 1.680, 3.579, // N 7-9
528 1.802, 1.849, 4.349, // O 10-12
529 1.788, 2.028, 6.184, // Ne 13-15
530 1.623, 2.147, 6.259, 2.971, // Al 16-19
531 1.631, 2.094, 6.588, 2.041, 1.646, // Si 20-24
532 1.535, 8.655, 1.706, 6.104, // Ar 25-28
533 1.581, 8.358, 8.183, 2.000, 1.878, // Ti 29-33
534 1.516, 8.325, 8.461, 6.579, 1.119, // Fe 34-38
535 1.422, 7.81, 8.385, 8.216, 2.167, // Ni 39-43
536 1.458, 8.049, 8.79, 9.695, 1.008, // Cu 44-48
537 1.442, 7.791, 7.837, 10.122, 2.463, 2.345, // Ge 49-54
538 1.645, 7.765, 19.192, 7.398, // Kr 55-58
539 1.313, 6.409, 19.229, 8.633, 5.036, 1.380, // Mo 59-64
540 1.295, 6.219, 18.751, 8.748, 10.184, 1.803, // Ag 65-70
541 1.277, 6.099, 20.386, 8.011, 10.007, 2.272, 1.948, // Sn 71-77
542 1.563, 6.312, 21.868, 5.762, 11.245, 7.250, // Xe 78-83
543 0.9198, 6.5408, 18.9727, 24.9149, 15.0161, 6.6284, // Ta 84-89
544 1.202, 5.582, 19.527, 18.741, 8.411, 14.387, 4.042, 2.108, // W 90-97
545 1.159, 5.467, 18.802, 33.905, 8.300, 9.342, 1.025, // Pt 98-104
546 1.124, 5.331, 18.078, 34.604, 8.127, 10.414, 1.322, // Au 105-111
547 2.000, 8.000, 18.000, 18.000, 14.000, 8.000, 10.000, 2.000, 2.000, // Pb 112-120
548 2.000, 8.000, 18.000, 32.000, 18.000, 8.000, 2.000, 1.000, 3.000 // U 121-129
549};
550
551//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
552
553// ShellEnergy in eV
554const G4double G4ICRU73QOModel::ShellEnergy[NQODATA] =
555 {
556 19.2, // H
557 41.8, // He
558 209.11, 21.68, // Be
559 486.2, 60.95, 23.43, // C
560 732.61, 100.646, 23.550, // N
561 965.1, 129.85, 31.60, // O
562 1525.9, 234.9, 56.18, // Ne
563 2701, 476.5, 150.42, 16.89, // Al
564 3206.1, 586.4, 186.8, 23.52, 14.91, // Si
565 5551.6, 472.43, 124.85, 22.332, // Ar
566 8554.6, 850.58, 93.47, 39.19, 19.46, // Ti
567 12254.7, 1279.29, 200.35, 49.19, 17.66, // Fe
568 14346.9, 1532.28, 262.71, 74.37, 23.03, // Ni
569 15438.5, 1667.96, 294.1, 70.69, 16.447, // Cu
570 19022.1, 2150.79, 455.79, 179.87, 57.89, 20.95, // Ge
571 24643, 2906.4, 366.85, 22.24, // Kr
572 34394, 4365.3, 589.36, 129.42, 35.59, 18.42, // Mo
573 43664.3, 5824.91, 909.79, 175.47, 54.89, 19.63, // Ag
574 49948, 6818.2, 1036.1, 172.65, 70.89, 33.87, 14.54, // Sn
575 58987, 8159, 1296.6, 356.75, 101.03, 16.52, // Xe
576 88926, 18012, 3210, 575, 108.7, 30.8, // Ta
577 115025.9, 17827.44, 3214.36, 750.41, 305.21, 105.50, 38.09, 21.25, // W
578 128342, 20254, 3601.8, 608.1, 115.0, 42.75, 17.04, // Pt
579 131872, 20903, 3757.4, 682.1, 105.2, 44.89, 17.575, // Au
580 154449, 25067, 5105.0, 987.44, 247.59, 188.1, 40.61, 19.2, 15.17, // Pb
581 167282, 27868, 6022.7, 1020.4, 244.81, 51.33, 13, 11.06, 14.43 // U
582};
583
584//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
585
586// Data for L0 from: Sigmund P., Haagerup U. Phys. Rev. A34 (1986) 892-910
587const G4double G4ICRU73QOModel::L0[67][2] =
588{
589 {0.00, 0.000001},
590 {0.10, 0.000001},
591 {0.12, 0.00001},
592 {0.14, 0.00005},
593 {0.16, 0.00014},
594 {0.18, 0.00030},
595 {0.20, 0.00057},
596 {0.25, 0.00189},
597 {0.30, 0.00429},
598 {0.35, 0.00784},
599 {0.40, 0.01248},
600 {0.45, 0.01811},
601 {0.50, 0.02462},
602 {0.60, 0.03980},
603 {0.70, 0.05731},
604 {0.80, 0.07662},
605 {0.90, 0.09733},
606 {1.00, 0.11916},
607 {1.20, 0.16532},
608 {1.40, 0.21376},
609 {1.60, 0.26362},
610 {1.80, 0.31428},
611 {2.00, 0.36532},
612 {2.50, 0.49272},
613 {3.00, 0.61765},
614 {3.50, 0.73863},
615 {4.00, 0.85496},
616 {4.50, 0.96634},
617 {5.00, 1.07272},
618 {6.00, 1.27086},
619 {7.00, 1.45075},
620 {8.00, 1.61412},
621 {9.00, 1.76277},
622 {10.00, 1.89836},
623 {12.00, 2.13625},
624 {14.00, 2.33787},
625 {16.00, 2.51093},
626 {18.00, 2.66134},
627 {20.00, 2.79358},
628 {25.00, 3.06539},
629 {30.00, 3.27902},
630 {35.00, 3.45430},
631 {40.00, 3.60281},
632 {45.00, 3.73167},
633 {50.00, 3.84555},
634 {60.00, 4.04011},
635 {70.00, 4.20264},
636 {80.00, 4.34229},
637 {90.00, 4.46474},
638 {100.00, 4.57378},
639 {120.00, 4.76155},
640 {140.00, 4.91953},
641 {160.00, 5.05590},
642 {180.00, 5.17588},
643 {200.00, 5.28299},
644 {250.00, 5.50925},
645 {300.00, 5.69364},
646 {350.00, 5.84926},
647 {400.00, 5.98388},
648 {450.00, 6.10252},
649 {500.00, 6.20856},
650 {600.00, 6.39189},
651 {700.00, 6.54677},
652 {800.00, 6.68084},
653 {900.00, 6.79905},
654 {1000.00, 6.90474}
655};
656
657//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
658
659// Data for L1 from: Mikkelsen H.H., Sigmund P. Phys. Rev. A40 (1989) 101-116
660const G4double G4ICRU73QOModel::L1[22][2] =
661{
662 {0.00, -0.000001},
663 {0.10, -0.00001},
664 {0.20, -0.00049},
665 {0.30, -0.00084},
666 {0.40, 0.00085},
667 {0.50, 0.00519},
668 {0.60, 0.01198},
669 {0.70, 0.02074},
670 {0.80, 0.03133},
671 {0.90, 0.04369},
672 {1.00, 0.06035},
673 {2.00, 0.24023},
674 {3.00, 0.44284},
675 {4.00, 0.62012},
676 {5.00, 0.77031},
677 {6.00, 0.90390},
678 {7.00, 1.02705},
679 {8.00, 1.10867},
680 {9.00, 1.17546},
681 {10.00, 1.21599},
682 {15.00, 1.24349},
683 {20.00, 1.16752}
684};
685
686//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
687
688// Data for L2 from: Mikkelsen H.H. Nucl. Instr. Meth. B58 (1991) 136-148
689const G4double G4ICRU73QOModel::L2[14][2] =
690{
691 {0.00, 0.000001},
692 {0.10, 0.00001},
693 {0.20, 0.00000},
694 {0.40, -0.00120},
695 {0.60, -0.00036},
696 {0.80, 0.00372},
697 {1.00, 0.01298},
698 {2.00, 0.08296},
699 {4.00, 0.21953},
700 {6.00, 0.23903},
701 {8.00, 0.20893},
702 {10.00, 0.10879},
703 {20.00, -0.88409},
704 {40.00, -1.13902}
705};
706
707//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
708
709// Correction obtained by V.Ivanchenko using G4BetheBlochModel
710const G4double G4ICRU73QOModel::factorBethe[99] = { 1.0,
7110.9637, 0.9872, 0.9469, 0.9875, 0.91, 0.989, 0.9507, 0.9773, 0.8621, 0.979, // 1 - 10
7120.8357, 0.868, 0.9417, 0.9466, 0.8911, 0.905, 0.944, 0.9607, 0.928, 0.96, // 11 - 20
7130.9098, 0.976, 0.8425, 0.8099, 0.7858, 0.947, 0.7248, 0.9106, 0.9246, 0.6821, // 21 - 30
7140.7223, 0.9784, 0.774, 0.7953, 0.829, 0.9405, 0.8318, 0.8583, 0.8563, 0.8481, // 31 - 40
7150.8207, 0.9033, 0.8063, 0.7837, 0.7818, 0.744, 0.875, 0.7693, 0.7871, 0.8459, // 41 - 50
7160.8231, 0.8462, 0.853, 0.8736, 0.856, 0.8762, 0.8629, 0.8323, 0.8064, 0.7828, // 51 - 60
7170.7533, 0.7273, 0.7093, 0.7157, 0.6823, 0.6612, 0.6418, 0.6395, 0.6323, 0.6221, // 61 - 70
7180.6497, 0.6746, 0.8568, 0.8541, 0.6958, 0.6962, 0.7051, 0.863, 0.8588, 0.7226, // 71 - 80
7190.7454, 0.78, 0.7783, 0.7996, 0.8216, 0.8632, 0.8558, 0.8792, 0.8745, 0.8676, // 81 - 90
7200.8321, 0.8272, 0.7999, 0.7934, 0.7787, 0.7851, 0.7692, 0.7598};
std::vector< G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
std::vector< G4Material * > G4MaterialTable
@ kStateUndefined
Definition: G4Material.hh:111
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
static G4int GetNumberOfElectrons(G4int Z, G4int SubshellNb)
static G4double GetBindingEnergy(G4int Z, G4int SubshellNb)
static G4int GetNumberOfShells(G4int Z)
G4double GetPlasmaEnergy(G4int idx) const
G4int GetElementIndex(G4int Z, G4State mState) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double GetZ() const
Definition: G4Element.hh:130
G4int GetZasInt() const
Definition: G4Element.hh:131
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) final
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual void CorrectionsAlongStep(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length) override
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) final
G4ICRU73QOModel(const G4ParticleDefinition *p=0, const G4String &nam="ICRU73QO")
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double) override
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:188
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:214
G4double GetElectronDensity() const
Definition: G4Material.hh:215
static G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:637
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
const G4String & GetParticleName() const
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:757
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:611
G4int SelectRandomAtomNumber(const G4Material *)
Definition: G4VEmModel.cc:315
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:813
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:618
G4bool UseAngularGeneratorFlag() const
Definition: G4VEmModel.hh:708
G4double MaxSecondaryKinEnergy(const G4DynamicParticle *dynParticle)
Definition: G4VEmModel.hh:510
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:118