Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4KleinNishinaModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4KleinNishinaModel
33//
34// Author: Vladimir Ivanchenko on base of G4KleinNishinaCompton
35//
36// Creation date: 13.06.2010
37//
38// Modifications:
39//
40// Class Description:
41//
42// -------------------------------------------------------------------
43//
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
46
49#include "G4SystemOfUnits.hh"
50#include "G4Electron.hh"
51#include "G4Gamma.hh"
52#include "Randomize.hh"
53#include "G4RandomDirection.hh"
54#include "G4DataVector.hh"
57#include "G4AtomicShells.hh"
58#include "G4LossTableManager.hh"
59#include "G4Log.hh"
60#include "G4Exp.hh"
61
62//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
63
64using namespace std;
65
67 : G4VEmModel(nam),
68 lv1(0.,0.,0.,0.),
69 lv2(0.,0.,0.,0.),
70 bst(0.,0.,0.)
71{
75 limitFactor = 4;
76 fProbabilities.resize(9,0.0);
78 fParticleChange = nullptr;
79 fAtomDeexcitation = nullptr;
80}
81
82//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
83
85{}
86
87//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
88
90 const G4DataVector& cuts)
91{
92 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
93 if(IsMaster()) { InitialiseElementSelectors(p, cuts); }
94 if(nullptr == fParticleChange) {
96 }
97}
98
99//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100
102 G4VEmModel* masterModel)
103{
105}
106
107//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
108
111 G4double gammaEnergy,
114{
115 G4double xSection = 0.0 ;
116 if (gammaEnergy <= LowEnergyLimit()) { return xSection; }
117
118 static const G4double a = 20.0 , b = 230.0 , c = 440.0;
119
120static const G4double
121 d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLHEP::barn,
122 d3= 6.7527 *CLHEP::barn, d4=-1.9798e+1*CLHEP::barn,
123 e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLHEP::barn,
124 e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLHEP::barn,
125 f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLHEP::barn,
126 f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLHEP::barn;
127
128 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
129 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
130
131 G4double T0 = 15.0*keV;
132 if (Z < 1.5) { T0 = 40.0*keV; }
133
134 G4double X = max(gammaEnergy, T0) / electron_mass_c2;
135 xSection = p1Z*G4Log(1.+2.*X)/X
136 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
137
138 // modification for low energy. (special case for Hydrogen)
139 static const G4double dT0 = keV;
140 if (gammaEnergy < T0) {
141 X = (T0+dT0) / electron_mass_c2 ;
142 G4double sigma = p1Z*G4Log(1.+2*X)/X
143 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
144 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0);
145 G4double c2 = 0.150;
146 if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); }
147 G4double y = G4Log(gammaEnergy/T0);
148 xSection *= G4Exp(-y*(c1+c2*y));
149 }
150
151 if(xSection < 0.0) { xSection = 0.0; }
152 // G4cout << "e= " << GammaEnergy << " Z= " << Z
153 // << " cross= " << xSection << G4endl;
154 return xSection;
155}
156
157//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
158
160 std::vector<G4DynamicParticle*>* fvect,
161 const G4MaterialCutsCouple* couple,
162 const G4DynamicParticle* aDynamicGamma,
163 G4double,
164 G4double)
165{
166 // primary gamma
167 G4double energy = aDynamicGamma->GetKineticEnergy();
168
169 // do nothing below the threshold
170 if(energy <= LowEnergyLimit()) { return; }
171
172 G4ThreeVector direction = aDynamicGamma->GetMomentumDirection();
173
174 // select atom
175 const G4Element* elm = SelectRandomAtom(couple, theGamma, energy);
176
177 // select shell first
178 G4int nShells = elm->GetNbOfAtomicShells();
179 if(nShells > (G4int)fProbabilities.size()) { fProbabilities.resize(nShells); }
180 G4double totprob = 0.0;
181 G4int i;
182 for(i=0; i<nShells; ++i) {
183 //G4double bindingEnergy = elm->GetAtomicShell(i);
184 totprob += elm->GetNbOfShellElectrons(i);
185 //totprob += elm->GetNbOfShellElectrons(i)/(bindingEnergy*bindingEnergy);
186 fProbabilities[i] = totprob;
187 }
188
189 // Loop on sampling
190 static const G4int nlooplim = 1000;
191 G4int nloop = 0;
192
193 G4double bindingEnergy, ePotEnergy, eKinEnergy;
194 G4double gamEnergy0, gamEnergy1;
195
196 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine();
197 G4double rndm[4];
198
199 do {
200 ++nloop;
201
202 // 4 random numbers to select e-
203 rndmEngineMod->flatArray(4, rndm);
204 G4double xprob = totprob*rndm[0];
205
206 // select shell
207 for(i=0; i<nShells; ++i) { if(xprob <= fProbabilities[i]) { break; } }
208
209 bindingEnergy = elm->GetAtomicShell(i);
210 lv1.set(0.0,0.0,energy,energy);
211 /*
212 G4cout << "nShells= " << nShells << " i= " << i
213 << " Egamma= " << energy << " Ebind= " << bindingEnergy
214 << G4endl;
215 */
216 // for rest frame of the electron
217 G4double x = -G4Log(rndm[1]);
218 eKinEnergy = bindingEnergy*x;
219 ePotEnergy = bindingEnergy*(1.0 + x);
220
221 // for rest frame of the electron
222 G4double eTotMomentum = sqrt(eKinEnergy*(eKinEnergy + 2*electron_mass_c2));
223 G4double phi = rndm[2]*twopi;
224 G4double costet = 2*rndm[3] - 1;
225 G4double sintet = sqrt((1 - costet)*(1 + costet));
226 lv2.set(eTotMomentum*sintet*cos(phi),eTotMomentum*sintet*sin(phi),
227 eTotMomentum*costet,eKinEnergy + electron_mass_c2);
228 bst = lv2.boostVector();
229 lv1.boost(-bst);
230
231 gamEnergy0 = lv1.e();
232
233 // In the rest frame of the electron
234 // The scattered gamma energy is sampled according to Klein-Nishina formula
235 // The random number techniques of Butcher & Messel are used
236 // (Nuc Phys 20(1960),15).
237 G4double E0_m = gamEnergy0/electron_mass_c2;
238
239 //G4cout << "Nloop= "<< nloop << " Ecm(keV)= " << gamEnergy0/keV << G4endl;
240 //
241 // sample the energy rate of the scattered gamma
242 //
243
244 G4double epsilon, epsilonsq, onecost, sint2, greject ;
245
246 G4double eps0 = 1./(1 + 2*E0_m);
247 G4double epsilon0sq = eps0*eps0;
248 G4double alpha1 = - G4Log(eps0);
249 G4double alpha2 = alpha1 + 0.5*(1 - epsilon0sq);
250
251 do {
252 ++nloop;
253 // false interaction if too many iterations
254 if(nloop > nlooplim) { return; }
255
256 // 3 random numbers to sample scattering
257 rndmEngineMod->flatArray(3, rndm);
258
259 if ( alpha1 > alpha2*rndm[0] ) {
260 epsilon = G4Exp(-alpha1*rndm[1]); // epsilon0**r
261 epsilonsq = epsilon*epsilon;
262
263 } else {
264 epsilonsq = epsilon0sq + (1.- epsilon0sq)*rndm[1];
265 epsilon = sqrt(epsilonsq);
266 }
267
268 onecost = (1.- epsilon)/(epsilon*E0_m);
269 sint2 = onecost*(2.-onecost);
270 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
271
272 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
273 } while (greject < rndm[2]);
274 gamEnergy1 = epsilon*gamEnergy0;
275
276 // before scattering total 4-momentum in e- system
277 lv2.set(0.0,0.0,0.0,electron_mass_c2);
278 lv2 += lv1;
279
280 //
281 // scattered gamma angles. ( Z - axis along the parent gamma)
282 //
283 if(sint2 < 0.0) { sint2 = 0.0; }
284 costet = 1. - onecost;
285 sintet = sqrt(sint2);
286 phi = twopi * rndmEngineMod->flat();
287
288 // e- recoil
289 //
290 // in rest frame of the electron
291 G4ThreeVector gamDir = lv1.vect().unit();
292 G4ThreeVector v = G4ThreeVector(sintet*cos(phi),sintet*sin(phi),costet);
293 v.rotateUz(gamDir);
294 lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(),gamEnergy1*v.z(),gamEnergy1);
295 lv2 -= lv1;
296 //G4cout<<"Egam(keV)= " << lv1.e()/keV
297 // <<" Ee(keV)= " << (lv2.e()-electron_mass_c2)/keV << G4endl;
298 lv2.boost(bst);
299 eKinEnergy = lv2.e() - electron_mass_c2 - ePotEnergy;
300 //G4cout << "Nloop= " << nloop << " eKinEnergy= " << eKinEnergy << G4endl;
301
302 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
303 } while ( eKinEnergy < 0.0 );
304
305 //
306 // update G4VParticleChange for the scattered gamma
307 //
308
309 lv1.boost(bst);
310 gamEnergy1 = lv1.e();
311 if(gamEnergy1 > lowestSecondaryEnergy) {
312 G4ThreeVector gamDirection1 = lv1.vect().unit();
313 gamDirection1.rotateUz(direction);
315 } else {
317 gamEnergy1 = 0.0;
318 }
320
321 //
322 // kinematic of the scattered electron
323 //
324
325 if(eKinEnergy > lowestSecondaryEnergy) {
326 G4ThreeVector eDirection = lv2.vect().unit();
327 eDirection.rotateUz(direction);
328 G4DynamicParticle* dp =
329 new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
330 fvect->push_back(dp);
331 } else { eKinEnergy = 0.0; }
332
333 G4double edep = energy - gamEnergy1 - eKinEnergy;
334 G4double esec = 0.0;
335
336 // sample deexcitation
337 //
338 if(fAtomDeexcitation) {
339 G4int index = couple->GetIndex();
340 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
341 G4int Z = elm->GetZasInt();
343 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
344 G4int nbefore = fvect->size();
345 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
346 G4int nafter = fvect->size();
347 //G4cout << "N1= " << nbefore << " N2= " << nafter << G4endl;
348 for (G4int j=nbefore; j<nafter; ++j) {
349 G4double e = ((*fvect)[j])->GetKineticEnergy();
350 if(esec + e > edep) {
351 // correct energy in order to have energy balance
352 e = edep - esec;
353 ((*fvect)[j])->SetKineticEnergy(e);
354 esec += e;
355 /*
356 G4cout << "### G4KleinNishinaModel Edep(eV)= " << edep/eV
357 << " Esec(eV)= " << esec/eV
358 << " E["<< j << "](eV)= " << e/eV
359 << " N= " << nafter
360 << " Z= " << Z << " shell= " << i
361 << " Ebind(keV)= " << bindingEnergy/keV
362 << " Eshell(keV)= " << shell->BindingEnergy()/keV
363 << G4endl;
364 */
365 // delete the rest of secondaries (should not happens)
366 for (G4int jj=nafter-1; jj>j; --jj) {
367 delete (*fvect)[jj];
368 fvect->pop_back();
369 }
370 break;
371 }
372 esec += e;
373 }
374 edep -= esec;
375 }
376 }
377 if(std::abs(energy - gamEnergy1 - eKinEnergy - esec - edep) > eV) {
378 G4cout << "### G4KleinNishinaModel dE(eV)= "
379 << (energy - gamEnergy1 - eKinEnergy - esec - edep)/eV
380 << " shell= " << i
381 << " E(keV)= " << energy/keV
382 << " Ebind(keV)= " << bindingEnergy/keV
383 << " Eg(keV)= " << gamEnergy1/keV
384 << " Ee(keV)= " << eKinEnergy/keV
385 << " Esec(keV)= " << esec/keV
386 << " Edep(keV)= " << edep/keV
387 << G4endl;
388 }
389 // energy balance
390 if(edep > 0.0) {
392 }
393}
394
395//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
396
G4AtomicShellEnumerator
double epsilon(double density, double temperature)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
void set(double x, double y, double z, double t)
virtual double flat()=0
virtual void flatArray(const int size, double *vect)=0
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4int GetNbOfAtomicShells() const
Definition: G4Element.hh:146
G4int GetZasInt() const
Definition: G4Element.hh:131
G4int GetNbOfShellElectrons(G4int index) const
Definition: G4Element.cc:381
G4double GetAtomicShell(G4int index) const
Definition: G4Element.cc:366
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4ParticleDefinition * theElectron
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax) override
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
G4KleinNishinaModel(const G4String &nam="KleinNishina")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4ParticleChangeForGamma * fParticleChange
G4ParticleDefinition * theGamma
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:842
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:834
G4bool IsMaster() const
Definition: G4VEmModel.hh:736
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:570
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:813
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)