Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGXiMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50
51 if( verboseLevel > 1 )
52 {
53 const G4Material *targetMaterial = aTrack.GetMaterial();
54 G4cout << "G4RPGXiMinusInelastic::ApplyYourself called" << G4endl;
55 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56 G4cout << "target material = " << targetMaterial->GetName() << ", ";
57 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58 << G4endl;
59 }
60
61 // Fermi motion and evaporation
62 // As of Geant3, the Fermi energy calculation had not been Done
63
64 G4double ek = originalIncident->GetKineticEnergy()/MeV;
65 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66 G4ReactionProduct modifiedOriginal;
67 modifiedOriginal = *originalIncident;
68
69 G4double tkin = targetNucleus.Cinema( ek );
70 ek += tkin;
71 modifiedOriginal.SetKineticEnergy( ek*MeV );
72 G4double et = ek + amas;
73 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75 if( pp > 0.0 )
76 {
77 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78 modifiedOriginal.SetMomentum( momentum * (p/pp) );
79 }
80 //
81 // calculate black track energies
82 //
83 tkin = targetNucleus.EvaporationEffects( ek );
84 ek -= tkin;
85 modifiedOriginal.SetKineticEnergy( ek*MeV );
86 et = ek + amas;
87 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88 pp = modifiedOriginal.GetMomentum().mag()/MeV;
89 if( pp > 0.0 )
90 {
91 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92 modifiedOriginal.SetMomentum( momentum * (p/pp) );
93 }
94 G4ReactionProduct currentParticle = modifiedOriginal;
95 G4ReactionProduct targetParticle;
96 targetParticle = *originalTarget;
97 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99 G4bool incidentHasChanged = false;
100 G4bool targetHasChanged = false;
101 G4bool quasiElastic = false;
102 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103 G4int vecLen = 0;
104 vec.Initialize( 0 );
105
106 const G4double cutOff = 0.1;
107 if( currentParticle.GetKineticEnergy()/MeV > cutOff )
108 Cascade( vec, vecLen,
109 originalIncident, currentParticle, targetParticle,
110 incidentHasChanged, targetHasChanged, quasiElastic );
111
112 CalculateMomenta( vec, vecLen,
113 originalIncident, originalTarget, modifiedOriginal,
114 targetNucleus, currentParticle, targetParticle,
115 incidentHasChanged, targetHasChanged, quasiElastic );
116
117 SetUpChange( vec, vecLen,
118 currentParticle, targetParticle,
119 incidentHasChanged );
120
121 delete originalTarget;
122 return &theParticleChange;
123}
124
125
126void
127G4RPGXiMinusInelastic::Cascade(G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
128 G4int& vecLen,
129 const G4HadProjectile* originalIncident,
130 G4ReactionProduct& currentParticle,
131 G4ReactionProduct& targetParticle,
132 G4bool& incidentHasChanged,
133 G4bool& targetHasChanged,
134 G4bool& quasiElastic)
135{
136 // Derived from H. Fesefeldt's original FORTRAN code CASXM
137 //
138 // XiMinus undergoes interaction with nucleon within a nucleus. Check if it is
139 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140 // occurs and input particle is degraded in energy. No other particles are produced.
141 // If reaction is possible, find the correct number of pions/protons/neutrons
142 // produced using an interpolation to multiplicity data. Replace some pions or
143 // protons/neutrons by kaons or strange baryons according to the average
144 // multiplicity per inelastic reaction.
145
146 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148 const G4double targetMass = targetParticle.GetMass()/MeV;
149 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
150 targetMass*targetMass +
151 2.0*targetMass*etOriginal );
152 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
153 if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
154 quasiElastic = true;
155 return;
156 }
157 static G4ThreadLocal G4bool first = true;
158 const G4int numMul = 1200;
159 const G4int numSec = 60;
160 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
161 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
162
163 // np = number of pi+, nneg = number of pi-, nz = number of pi0
164 G4int counter, nt = 0, np = 0, nneg = 0, nz = 0;
165 G4double test;
166 const G4double c = 1.25;
167 const G4double b[] = { 0.7, 0.7 };
168 if (first) { // Computation of normalization constants will only be done once
169 first = false;
170 G4int i;
171 for (i = 0; i < numMul; ++i) protmul[i] = 0.0;
172 for (i = 0; i < numSec; ++i) protnorm[i] = 0.0;
173 counter = -1;
174 for (np = 0; np < (numSec/3); ++np) {
175 for (nneg = std::max(0,np-1); nneg <= (np+1); ++nneg) {
176 for (nz = 0; nz < numSec/3; ++nz) {
177 if (++counter < numMul) {
178 nt = np + nneg + nz;
179 if (nt > 0 && nt <= numSec) {
180 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
181 protnorm[nt-1] += protmul[counter];
182 }
183 }
184 }
185 }
186 }
187
188 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
189 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
190 counter = -1;
191 for( np=0; np<numSec/3; ++np )
192 {
193 for( nneg=np; nneg<=(np+2); ++nneg )
194 {
195 for( nz=0; nz<numSec/3; ++nz )
196 {
197 if( ++counter < numMul )
198 {
199 nt = np+nneg+nz;
200 if( nt>0 && nt<=numSec )
201 {
202 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
203 neutnorm[nt-1] += neutmul[counter];
204 }
205 }
206 }
207 }
208 }
209 for( i=0; i<numSec; ++i )
210 {
211 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
212 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
213 }
214 } // end of initialization
215
216 const G4double expxu = 82.; // upper bound for arg. of exp
217 const G4double expxl = -expxu; // lower bound for arg. of exp
223 //
224 // energetically possible to produce pion(s) --> inelastic scattering
225 //
226 G4double n, anpn;
227 GetNormalizationConstant( availableEnergy, n, anpn );
228 G4double ran = G4UniformRand();
229 G4double dum, excs = 0.0;
230 if( targetParticle.GetDefinition() == aProton )
231 {
232 counter = -1;
233 for( np=0; np<numSec/3 && ran>=excs; ++np )
234 {
235 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
236 {
237 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
238 {
239 if( ++counter < numMul )
240 {
241 nt = np+nneg+nz;
242 if( nt>0 && nt<=numSec )
243 {
244 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
245 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
246 if( std::fabs(dum) < 1.0 )
247 {
248 if( test >= 1.0e-10 )excs += dum*test;
249 }
250 else
251 excs += dum*test;
252 }
253 }
254 }
255 }
256 }
257 if( ran >= excs ) // 3 previous loops continued to the end
258 {
259 quasiElastic = true;
260 return;
261 }
262 np--; nneg--; nz--;
263 //
264 // number of secondary mesons determined by kno distribution
265 // check for total charge of final state mesons to determine
266 // the kind of baryons to be produced, taking into account
267 // charge and strangeness conservation
268 //
269 if( np < nneg )
270 {
271 if( np+1 == nneg )
272 {
273 currentParticle.SetDefinitionAndUpdateE( aXiZero );
274 incidentHasChanged = true;
275 }
276 else // charge mismatch
277 {
278 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
279 incidentHasChanged = true;
280 //
281 // correct the strangeness by replacing a pi- by a kaon-
282 //
283 vec.Initialize( 1 );
285 p->SetDefinition( aKaonMinus );
286 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
287 vec.SetElement( vecLen++, p );
288 --nneg;
289 }
290 }
291 else if( np == nneg )
292 {
293 if( G4UniformRand() >= 0.5 )
294 {
295 currentParticle.SetDefinitionAndUpdateE( aXiZero );
296 incidentHasChanged = true;
297 targetParticle.SetDefinitionAndUpdateE( aNeutron );
298 targetHasChanged = true;
299 }
300 }
301 else
302 {
303 targetParticle.SetDefinitionAndUpdateE( aNeutron );
304 targetHasChanged = true;
305 }
306 }
307 else // target must be a neutron
308 {
309 counter = -1;
310 for( np=0; np<numSec/3 && ran>=excs; ++np )
311 {
312 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
313 {
314 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
315 {
316 if( ++counter < numMul )
317 {
318 nt = np+nneg+nz;
319 if( nt>0 && nt<=numSec )
320 {
321 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
322 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
323 if( std::fabs(dum) < 1.0 )
324 {
325 if( test >= 1.0e-10 )excs += dum*test;
326 }
327 else
328 excs += dum*test;
329 }
330 }
331 }
332 }
333 }
334 if( ran >= excs ) // 3 previous loops continued to the end
335 {
336 quasiElastic = true;
337 return;
338 }
339 np--; nneg--; nz--;
340 if( np+1 < nneg )
341 {
342 if( np+2 == nneg )
343 {
344 currentParticle.SetDefinitionAndUpdateE( aXiZero );
345 incidentHasChanged = true;
346 targetParticle.SetDefinitionAndUpdateE( aProton );
347 targetHasChanged = true;
348 }
349 else // charge mismatch
350 {
351 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
352 incidentHasChanged = true;
353 targetParticle.SetDefinitionAndUpdateE( aProton );
354 targetHasChanged = true;
355 //
356 // correct the strangeness by replacing a pi- by a kaon-
357 //
358 vec.Initialize( 1 );
360 p->SetDefinition( aKaonMinus );
361 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
362 vec.SetElement( vecLen++, p );
363 --nneg;
364 }
365 }
366 else if( np+1 == nneg )
367 {
368 if( G4UniformRand() < 0.5 )
369 {
370 currentParticle.SetDefinitionAndUpdateE( aXiZero );
371 incidentHasChanged = true;
372 }
373 else
374 {
375 targetParticle.SetDefinitionAndUpdateE( aProton );
376 targetHasChanged = true;
377 }
378 }
379 }
380 SetUpPions(np, nneg, nz, vec, vecLen);
381 return;
382}
383
384 /* end of file */
385
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:72
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:112
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Proton * Proton()
Definition: G4Proton.cc:92
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:107
static G4XiZero * XiZero()
Definition: G4XiZero.cc:105
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77