BOSS 7.1.2
BESIII Offline Software System
Loading...
Searching...
No Matches
EvtVector3C Class Reference

#include <EvtVector3C.hh>

Public Member Functions

 EvtVector3C ()
 
 EvtVector3C (const EvtComplex &, const EvtComplex &, const EvtComplex &)
 
virtual ~EvtVector3C ()
 
void set (const int, const EvtComplex &)
 
void set (const EvtComplex &, const EvtComplex &, const EvtComplex &)
 
void set (double, double, double)
 
EvtVector3Coperator*= (const EvtComplex &c)
 
EvtVector3Coperator/= (const EvtComplex &c)
 
EvtVector3Coperator+= (const EvtVector3C &v2)
 
EvtVector3Coperator-= (const EvtVector3C &v2)
 
 EvtVector3C (const EvtVector3R &v1)
 
void applyRotateEuler (double phi, double theta, double ksi)
 
const EvtComplexget (int) const
 
EvtVector3C conj () const
 
EvtVector3C cross (const EvtVector3C &v2)
 
double dot (const EvtVector3C &p2)
 

Friends

EvtVector3C rotateEuler (const EvtVector3C &v, double phi, double theta, double ksi)
 
EvtVector3C operator* (const EvtComplex &c, const EvtVector3C &v2)
 
EvtVector3C operator* (const EvtComplex &c, const EvtVector3R &v2)
 
EvtComplex operator* (const EvtVector3R &v1, const EvtVector3C &v2)
 
EvtComplex operator* (const EvtVector3C &v1, const EvtVector3R &v2)
 
EvtComplex operator* (const EvtVector3C &v1, const EvtVector3C &v2)
 
EvtVector3C operator+ (const EvtVector3C &v1, const EvtVector3C &v2)
 
EvtVector3C operator- (const EvtVector3C &v1, const EvtVector3C &v2)
 
EvtVector3C operator* (const EvtVector3C &v1, const EvtComplex &c)
 
std::ostream & operator<< (std::ostream &c, const EvtVector3C &v)
 

Detailed Description

Definition at line 29 of file EvtVector3C.hh.

Constructor & Destructor Documentation

◆ EvtVector3C() [1/3]

EvtVector3C::EvtVector3C ( )

Definition at line 31 of file EvtVector3C.cc.

31 {
32
33 v[0]=EvtComplex(0.0); v[1]=EvtComplex(0.0); v[2]=EvtComplex(0.0);
34}

Referenced by conj().

◆ EvtVector3C() [2/3]

EvtVector3C::EvtVector3C ( const EvtComplex & e1,
const EvtComplex & e2,
const EvtComplex & e3 )

Definition at line 42 of file EvtVector3C.cc.

42 {
43
44 v[0]=e1; v[1]=e2; v[2]=e3;
45}
Double_t e1
Double_t e2

◆ ~EvtVector3C()

EvtVector3C::~EvtVector3C ( )
virtual

Definition at line 36 of file EvtVector3C.cc.

36 {
37
38 return;
39}

◆ EvtVector3C() [3/3]

EvtVector3C::EvtVector3C ( const EvtVector3R & v1)
inline

Definition at line 68 of file EvtVector3C.hh.

68 {
69
70 v[0]=EvtComplex(v1.get(0),0.0);
71 v[1]=EvtComplex(v1.get(1),0.0);
72 v[2]=EvtComplex(v1.get(2),0.0);
73
74}
double get(int i) const

Member Function Documentation

◆ applyRotateEuler()

void EvtVector3C::applyRotateEuler ( double phi,
double theta,
double ksi )

Definition at line 71 of file EvtVector3C.cc.

71 {
72
73 EvtComplex temp[3];
74 double sp,st,sk,cp,ct,ck;
75
76 sp=sin(phi);
77 st=sin(theta);
78 sk=sin(ksi);
79 cp=cos(phi);
80 ct=cos(theta);
81 ck=cos(ksi);
82
83 temp[0]=( ck*ct*cp-sk*sp)*v[0]+( -sk*ct*cp-ck*sp)*v[1]+st*cp*v[2];
84 temp[1]=( ck*ct*sp+sk*cp)*v[0]+(-sk*ct*sp+ck*cp)*v[1]+st*sp*v[2];
85 temp[2]=-ck*st*v[0]+sk*st*v[1]+ct*v[2];
86
87
88 v[0]=temp[0];
89 v[1]=temp[1];
90 v[2]=temp[2];
91}
double sin(const BesAngle a)
Definition BesAngle.h:210
double cos(const BesAngle a)
Definition BesAngle.h:213
**********Class see also m_nmax DOUBLE PRECISION m_amel DOUBLE PRECISION m_x2 DOUBLE PRECISION m_alfinv DOUBLE PRECISION m_Xenph INTEGER m_KeyWtm INTEGER m_idyfs DOUBLE PRECISION m_zini DOUBLE PRECISION m_q2 DOUBLE PRECISION m_Wt_KF DOUBLE PRECISION m_WtCut INTEGER m_KFfin *COMMON c_KarLud $ !Input CMS energy[GeV] $ !CMS energy after beam spread beam strahlung[GeV] $ !Beam energy spread[GeV] $ !z boost due to beam spread $ !electron beam mass *ff pair spectrum $ !minimum v
Definition KarLud.h:35

◆ conj()

EvtVector3C EvtVector3C::conj ( ) const
inline

Definition at line 171 of file EvtVector3C.hh.

171 {
172
173 return EvtVector3C(::conj(v[0]),::conj(v[1]),
174 ::conj(v[2]));
175}
EvtVector3C conj() const

Referenced by conj(), EvtVVP::decay(), EvtVVSPwave::decay(), and EvtSVVHelAmp::SVVHel().

◆ cross()

EvtVector3C EvtVector3C::cross ( const EvtVector3C & v2)

Definition at line 48 of file EvtVector3C.cc.

48 {
49
50 //Calcs the cross product. Added by djl on July 27, 1995.
51
52 EvtVector3C temp;
53
54 temp.v[0] = v[1]*p2.v[2] - v[2]*p2.v[1];
55 temp.v[1] = v[2]*p2.v[0] - v[0]*p2.v[2];
56 temp.v[2] = v[0]*p2.v[1] - v[1]*p2.v[0];
57
58 return temp;
59}
double p2[4]

Referenced by EvtVVSPwave::decay().

◆ dot()

double EvtVector3C::dot ( const EvtVector3C & p2)

◆ get()

const EvtComplex & EvtVector3C::get ( int i) const
inline

Definition at line 94 of file EvtVector3C.hh.

94 {
95
96 return v[i];
97}

◆ operator*=()

EvtVector3C & EvtVector3C::operator*= ( const EvtComplex & c)
inline

Definition at line 99 of file EvtVector3C.hh.

99 {
100
101 v[0]*=c;
102 v[1]*=c;
103 v[2]*=c;
104 return *this;
105}

◆ operator+=()

EvtVector3C & EvtVector3C::operator+= ( const EvtVector3C & v2)
inline

Definition at line 115 of file EvtVector3C.hh.

115 {
116
117 v[0]+=v2.v[0];
118 v[1]+=v2.v[1];
119 v[2]+=v2.v[2];
120 return *this;
121}

◆ operator-=()

EvtVector3C & EvtVector3C::operator-= ( const EvtVector3C & v2)
inline

Definition at line 123 of file EvtVector3C.hh.

123 {
124
125 v[0]-=v2.v[0];
126 v[1]-=v2.v[1];
127 v[2]-=v2.v[2];
128 return *this;
129}

◆ operator/=()

EvtVector3C & EvtVector3C::operator/= ( const EvtComplex & c)
inline

Definition at line 107 of file EvtVector3C.hh.

107 {
108
109 v[0]/=c;
110 v[1]/=c;
111 v[2]/=c;
112 return *this;
113}

◆ set() [1/3]

void EvtVector3C::set ( const EvtComplex & x,
const EvtComplex & y,
const EvtComplex & z )
inline

Definition at line 82 of file EvtVector3C.hh.

83 {
84
85 v[0]=x; v[1]=y; v[2]=z;
86}
Double_t x[10]
double y[1000]

◆ set() [2/3]

void EvtVector3C::set ( const int i,
const EvtComplex & c )
inline

Definition at line 76 of file EvtVector3C.hh.

76 {
77
78 v[i]=c;
79
80}

Referenced by EvtTensor3C::cont1(), EvtTensor3C::cont1(), EvtTensor3C::cont2(), and EvtTensor3C::cont2().

◆ set() [3/3]

void EvtVector3C::set ( double x,
double y,
double z )
inline

Definition at line 88 of file EvtVector3C.hh.

89 {
90
91 v[0]=EvtComplex(x); v[1]=EvtComplex(y); v[2]=EvtComplex(z);
92}

Friends And Related Symbol Documentation

◆ operator* [1/6]

EvtVector3C operator* ( const EvtComplex & c,
const EvtVector3C & v2 )
friend

Definition at line 146 of file EvtVector3C.hh.

146 {
147
148 return EvtVector3C(v2)*=c;
149}

◆ operator* [2/6]

EvtVector3C operator* ( const EvtComplex & c,
const EvtVector3R & v2 )
friend

Definition at line 151 of file EvtVector3C.hh.

151 {
152
153 return EvtVector3C(v2)*=c;
154}

◆ operator* [3/6]

EvtVector3C operator* ( const EvtVector3C & v1,
const EvtComplex & c )
friend

Definition at line 141 of file EvtVector3C.hh.

141 {
142
143 return EvtVector3C(v1)*=c;
144}

◆ operator* [4/6]

EvtComplex operator* ( const EvtVector3C & v1,
const EvtVector3C & v2 )
friend

Definition at line 166 of file EvtVector3C.hh.

166 {
167
168 return v1.v[0]*v2.v[0]+v1.v[1]*v2.v[1]+v1.v[2]*v2.v[2];
169}

◆ operator* [5/6]

EvtComplex operator* ( const EvtVector3C & v1,
const EvtVector3R & v2 )
friend

Definition at line 161 of file EvtVector3C.hh.

161 {
162
163 return v1.v[0]*v2.get(0)+v1.v[1]*v2.get(1)+v1.v[2]*v2.get(2);
164}

◆ operator* [6/6]

EvtComplex operator* ( const EvtVector3R & v1,
const EvtVector3C & v2 )
friend

Definition at line 156 of file EvtVector3C.hh.

156 {
157
158 return v1.get(0)*v2.v[0]+v1.get(1)*v2.v[1]+v1.get(2)*v2.v[2];
159}

◆ operator+

EvtVector3C operator+ ( const EvtVector3C & v1,
const EvtVector3C & v2 )
friend

Definition at line 131 of file EvtVector3C.hh.

131 {
132
133 return EvtVector3C(v1)+=v2;
134}

◆ operator-

EvtVector3C operator- ( const EvtVector3C & v1,
const EvtVector3C & v2 )
friend

Definition at line 136 of file EvtVector3C.hh.

136 {
137
138 return EvtVector3C(v1)-=v2;
139}

◆ operator<<

std::ostream & operator<< ( std::ostream & c,
const EvtVector3C & v )
friend

◆ rotateEuler

EvtVector3C rotateEuler ( const EvtVector3C & v,
double phi,
double theta,
double ksi )
friend

Definition at line 61 of file EvtVector3C.cc.

62 {
63
64 EvtVector3C tmp(v);
65 tmp.applyRotateEuler(alpha,beta,gamma);
66 return tmp;
67
68}
const double alpha

The documentation for this class was generated from the following files: