BOSS 7.0.8
BESIII Offline Software System
Loading...
Searching...
No Matches
VFHelix Class Reference

VFHelix parameter class. More...

#include <Helix.h>

Public Member Functions

 VFHelix (const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
 Constructor with pivot, helix parameter a, and its error matrix.
 
 VFHelix (const HepPoint3D &pivot, const HepVector &a)
 Constructor without error matrix.
 
 VFHelix (const HepPoint3D &position, const Hep3Vector &momentum, double charge)
 Constructor with position, momentum, and charge.
 
virtual ~VFHelix ()
 Destructor.
 
const HepPoint3Dcenter (void) const
 returns position of helix center(z = 0.);
 
const HepPoint3Dpivot (void) const
 returns pivot position.
 
double radius (void) const
 returns radious of helix.
 
HepPoint3D x (double dPhi=0.) const
 returns position after rotating angle dPhi in phi direction.
 
double * x (double dPhi, double p[3]) const
 
HepPoint3D x (double dPhi, HepSymMatrix &Ex) const
 returns position and convariance matrix(Ex) after rotation.
 
Hep3Vector direction (double dPhi=0.) const
 returns direction vector after rotating angle dPhi in phi direction.
 
Hep3Vector momentum (double dPhi=0.) const
 returns momentum vector after rotating angle dPhi in phi direction.
 
Hep3Vector momentum (double dPhi, HepSymMatrix &Em) const
 returns momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass, HepSymMatrix &Em) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass, HepPoint3D &x, HepSymMatrix &Emx) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
double dr (void) const
 returns an element of parameters.
 
double phi0 (void) const
 
double kappa (void) const
 
double dz (void) const
 
double tanl (void) const
 
double curv (void) const
 
double sinPhi0 (void) const
 
double cosPhi0 (void) const
 
const HepVector & a (void) const
 returns helix parameters.
 
const HepSymMatrix & Ea (void) const
 returns error matrix.
 
const HepVector & a (const HepVector &newA)
 sets helix parameters.
 
const HepSymMatrix & Ea (const HepSymMatrix &newdA)
 sets helix paramters and error matrix.
 
const HepPoint3Dpivot (const HepPoint3D &newPivot)
 sets pivot position.
 
void set (const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
 sets helix pivot position, parameters, and error matrix.
 
void ignoreErrorMatrix (void)
 unsets error matrix. Error calculations will be ignored after this function call until an error matrix be set again. 0 matrix will be return as a return value for error matrix when you call functions which returns an error matrix.
 
double bFieldZ (double)
 sets/returns z componet of the magnetic field.
 
double bFieldZ (void) const
 
VFHelixoperator= (const VFHelix &)
 Copy operator.
 
HepMatrix delApDelA (const HepVector &ap) const
 
HepMatrix delXDelA (double phi) const
 
HepMatrix delMDelA (double phi) const
 
HepMatrix del4MDelA (double phi, double mass) const
 
HepMatrix del4MXDelA (double phi, double mass) const
 

Static Public Attributes

static const double ConstantAlpha = 333.564095
 Constant alpha for uniform field.
 

Detailed Description

VFHelix parameter class.

Definition at line 38 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

Constructor & Destructor Documentation

◆ VFHelix() [1/3]

VFHelix::VFHelix ( const HepPoint3D pivot,
const HepVector &  a,
const HepSymMatrix &  Ea 
)

Constructor with pivot, helix parameter a, and its error matrix.

Definition at line 37 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

40: m_bField(10.0),
41 m_alpha(333.564095),
42 m_pivot(pivot),
43 m_a(a),
44 m_Ea(Ea),
45 m_matrixValid(true)
46{
47 // m_alpha = 10000. / 2.99792458 / m_bField;
48 // m_alpha = 333.564095;
49 m_bField = 10 * VertexFitBField::instance()->getBFieldZRef();
50 m_alpha = 10000. / 2.99792458 / m_bField;
51 //std::cout << "m_bField = " << m_bField << " m_alpha = " << m_alpha << std::endl;
52 updateCache();
53}
const HepPoint3D & pivot(void) const
returns pivot position.
const HepSymMatrix & Ea(void) const
returns error matrix.
const HepVector & a(void) const
returns helix parameters.

◆ VFHelix() [2/3]

VFHelix::VFHelix ( const HepPoint3D pivot,
const HepVector &  a 
)

Constructor without error matrix.

Definition at line 55 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

57: m_bField(10.0),
58 m_alpha(333.564095),
59 m_pivot(pivot),
60 m_a(a),
61 m_Ea(HepSymMatrix(5,0)),
62 m_matrixValid(false)
63{
64 // m_alpha = 333.564095;
65 m_bField = 10 * VertexFitBField::instance()->getBFieldZRef();
66 m_alpha = 10000. / 2.99792458 / m_bField;
67
68 updateCache();
69}

◆ VFHelix() [3/3]

VFHelix::VFHelix ( const HepPoint3D position,
const Hep3Vector &  momentum,
double  charge 
)

Constructor with position, momentum, and charge.

Definition at line 71 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

74: m_bField(10.0),
75 m_alpha(333.564095),
76 m_pivot(position),
77 m_a(HepVector(5,0)),
78 m_Ea(HepSymMatrix(5,0)),
79 m_matrixValid(false)
80{
81
82 m_bField = 10 * VertexFitBField::instance()->getBFieldZRef();
83 m_alpha = 10000. / 2.99792458 / m_bField;
84
85 m_a[0] = 0.;
86 m_a[1] = fmod(atan2(- momentum.x(), momentum.y())
87 + M_PI4, M_PI2);
88 m_a[3] = 0.;
89 double perp(momentum.perp());
90 if (perp != 0.0) {
91 m_a[2] = charge / perp;
92 m_a[4] = momentum.z() / perp;
93 }
94 else {
95 m_a[2] = charge * (DBL_MAX);
96 if (momentum.z() >= 0) {
97 m_a[4] = (DBL_MAX);
98 } else {
99 m_a[4] = -(DBL_MAX);
100 }
101 }
102 // m_alpha = 333.564095;
103 updateCache();
104}
**********INTEGER nmxhep !maximum number of particles DOUBLE PRECISION vhep INTEGER jdahep COMMON hepevt $ !serial number $ !number of particles $ !status code $ !particle ident KF $ !parent particles $ !childreen particles $ !four momentum
#define DBL_MAX
Definition: KalFitAlg.h:13
float charge

◆ ~VFHelix()

VFHelix::~VFHelix ( )
virtual

Destructor.

Definition at line 106 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

106 {
107}

Member Function Documentation

◆ a() [1/2]

const HepVector & VFHelix::a ( const HepVector &  newA)
inline

sets helix parameters.

Definition at line 252 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

252 {
253 m_a = i;
254 updateCache();
255 return m_a;
256}

◆ a() [2/2]

◆ bFieldZ() [1/2]

double VFHelix::bFieldZ ( double  a)
inline

sets/returns z componet of the magnetic field.

Definition at line 266 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

266 {
267 m_bField = a;
268 m_alpha = 10000. / 2.99792458 / m_bField;
269 updateCache();
270 return m_bField;
271}

◆ bFieldZ() [2/2]

double VFHelix::bFieldZ ( void  ) const
inline

Definition at line 275 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

275 {
276 return m_bField;
277}

◆ center()

const HepPoint3D & VFHelix::center ( void  ) const
inline

returns position of helix center(z = 0.);

Definition at line 180 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

180 {
181 return m_center;
182}

◆ cosPhi0()

double VFHelix::cosPhi0 ( void  ) const
inline

Definition at line 287 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

287 {
288 return m_cp;
289}

◆ curv()

double VFHelix::curv ( void  ) const
inline

Definition at line 234 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

234 {
235 return m_r;
236}

◆ del4MDelA()

HepMatrix VFHelix::del4MDelA ( double  phi,
double  mass 
) const

Definition at line 578 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

578 {
579 //
580 // Calculate Jacobian (@4m/@a)
581 // Vector a is helix parameters and phi is internal parameter.
582 // Vector 4m is 4 momentum.
583 //
584
585 HepMatrix d4MDA(4,5,0);
586
587 double phi0 = m_ac[1];
588 double cpa = m_ac[2];
589 double tnl = m_ac[4];
590
591 double cosf0phi = cos(phi0+phi);
592 double sinf0phi = sin(phi0+phi);
593
594 double rho;
595 if(cpa != 0.)rho = 1./cpa;
596 else rho = (DBL_MAX);
597
598 double charge = 1.;
599 if(cpa < 0.)charge = -1.;
600
601 double E = sqrt(rho*rho*(1.+tnl*tnl)+mass*mass);
602
603 d4MDA[0][1] = -fabs(rho)*cosf0phi;
604 d4MDA[0][2] = charge*rho*rho*sinf0phi;
605
606 d4MDA[1][1] = -fabs(rho)*sinf0phi;
607 d4MDA[1][2] = -charge*rho*rho*cosf0phi;
608
609 d4MDA[2][2] = -charge*rho*rho*tnl;
610 d4MDA[2][4] = fabs(rho);
611
612 if (cpa != 0.0 && E != 0.0) {
613 d4MDA[3][2] = (-1.-tnl*tnl)/(cpa*cpa*cpa*E);
614 d4MDA[3][4] = tnl/(cpa*cpa*E);
615 } else {
616 d4MDA[3][2] = (DBL_MAX);
617 d4MDA[3][4] = (DBL_MAX);
618 }
619 return d4MDA;
620}
double sin(const BesAngle a)
Definition: BesAngle.h:210
double cos(const BesAngle a)
Definition: BesAngle.h:213
double mass

Referenced by momentum().

◆ del4MXDelA()

HepMatrix VFHelix::del4MXDelA ( double  phi,
double  mass 
) const

Definition at line 624 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

624 {
625 //
626 // Calculate Jacobian (@4mx/@a)
627 // Vector a is helix parameters and phi is internal parameter.
628 // Vector 4xm is 4 momentum and position.
629 //
630
631 HepMatrix d4MXDA(7,5,0);
632
633 const double & dr = m_ac[0];
634 const double & phi0 = m_ac[1];
635 const double & cpa = m_ac[2];
636 const double & dz = m_ac[3];
637 const double & tnl = m_ac[4];
638
639 double cosf0phi = cos(phi0+phi);
640 double sinf0phi = sin(phi0+phi);
641
642 double rho;
643 if(cpa != 0.)rho = 1./cpa;
644 else rho = (DBL_MAX);
645
646 double charge = 1.;
647 if(cpa < 0.)charge = -1.;
648
649 double E = sqrt(rho * rho * (1. + tnl * tnl) + mass * mass);
650
651 d4MXDA[0][1] = - fabs(rho) * cosf0phi;
652 d4MXDA[0][2] = charge * rho * rho * sinf0phi;
653
654 d4MXDA[1][1] = - fabs(rho) * sinf0phi;
655 d4MXDA[1][2] = - charge * rho * rho * cosf0phi;
656
657 d4MXDA[2][2] = - charge * rho * rho * tnl;
658 d4MXDA[2][4] = fabs(rho);
659
660 if (cpa != 0.0 && E != 0.0) {
661 d4MXDA[3][2] = (- 1. - tnl * tnl) / (cpa * cpa * cpa * E);
662 d4MXDA[3][4] = tnl / (cpa * cpa * E);
663 } else {
664 d4MXDA[3][2] = (DBL_MAX);
665 d4MXDA[3][4] = (DBL_MAX);
666 }
667
668 d4MXDA[4][0] = m_cp;
669 d4MXDA[4][1] = - dr * m_sp + m_r * (- m_sp + sinf0phi);
670 if (cpa != 0.0) {
671 d4MXDA[4][2] = - (m_r / cpa) * (m_cp - cosf0phi);
672 } else {
673 d4MXDA[4][2] = (DBL_MAX);
674 }
675
676 d4MXDA[5][0] = m_sp;
677 d4MXDA[5][1] = dr * m_cp + m_r * (m_cp - cosf0phi);
678 if (cpa != 0.0) {
679 d4MXDA[5][2] = - (m_r / cpa) * (m_sp - sinf0phi);
680
681 d4MXDA[6][2] = (m_r / cpa) * tnl * phi;
682 } else {
683 d4MXDA[5][2] = (DBL_MAX);
684
685 d4MXDA[6][2] = (DBL_MAX);
686 }
687
688 d4MXDA[6][3] = 1.;
689 d4MXDA[6][4] = - m_r * phi;
690
691 return d4MXDA;
692}
double dr(void) const
returns an element of parameters.

Referenced by momentum().

◆ delApDelA()

HepMatrix VFHelix::delApDelA ( const HepVector &  ap) const

Definition at line 419 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

419 {
420 //
421 // Calculate Jacobian (@ap/@a)
422 // Vector ap is new helix parameters and a is old helix parameters.
423 //
424
425 HepMatrix dApDA(5,5,0);
426
427 const double & dr = m_ac[0];
428 const double & phi0 = m_ac[1];
429 const double & cpa = m_ac[2];
430 const double & dz = m_ac[3];
431 const double & tnl = m_ac[4];
432
433 double drp = ap[0];
434 double phi0p = ap[1];
435 double cpap = ap[2];
436 double dzp = ap[3];
437 double tnlp = ap[4];
438
439 double rdr = m_r + dr;
440 double rdrpr;
441 if ((m_r + drp) != 0.0) {
442 rdrpr = 1. / (m_r + drp);
443 } else {
444 rdrpr = (DBL_MAX);
445 }
446 // double csfd = cos(phi0)*cos(phi0p) + sin(phi0)*sin(phi0p);
447 // double snfd = cos(phi0)*sin(phi0p) - sin(phi0)*cos(phi0p);
448 double csfd = cos(phi0p - phi0);
449 double snfd = sin(phi0p - phi0);
450 double phid = fmod(phi0p - phi0 + M_PI8, M_PI2);
451 if (phid > M_PI) phid = phid - M_PI2;
452
453 dApDA[0][0] = csfd;
454 dApDA[0][1] = rdr*snfd;
455 if(cpa!=0.0) {
456 dApDA[0][2] = (m_r/cpa)*( 1.0 - csfd );
457 } else {
458 dApDA[0][2] = (DBL_MAX);
459 }
460
461 dApDA[1][0] = - rdrpr*snfd;
462 dApDA[1][1] = rdr*rdrpr*csfd;
463 if(cpa!=0.0) {
464 dApDA[1][2] = (m_r/cpa)*rdrpr*snfd;
465 } else {
466 dApDA[1][2] = (DBL_MAX);
467 }
468
469 dApDA[2][2] = 1.0;
470
471 dApDA[3][0] = m_r*rdrpr*tnl*snfd;
472 dApDA[3][1] = m_r*tnl*(1.0 - rdr*rdrpr*csfd);
473 if(cpa!=0.0) {
474 dApDA[3][2] = (m_r/cpa)*tnl*(phid - m_r*rdrpr*snfd);
475 } else {
476 dApDA[3][2] = (DBL_MAX);
477 }
478 dApDA[3][3] = 1.0;
479 dApDA[3][4] = - m_r*phid;
480
481 dApDA[4][4] = 1.0;
482
483 return dApDA;
484}
#define M_PI
Definition: TConstant.h:4

Referenced by pivot().

◆ delMDelA()

HepMatrix VFHelix::delMDelA ( double  phi) const

Definition at line 541 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

541 {
542 //
543 // Calculate Jacobian (@m/@a)
544 // Vector a is helix parameters and phi is internal parameter.
545 // Vector m is momentum.
546 //
547
548 HepMatrix dMDA(3,5,0);
549
550 const double & phi0 = m_ac[1];
551 const double & cpa = m_ac[2];
552 const double & tnl = m_ac[4];
553
554 double cosf0phi = cos(phi0+phi);
555 double sinf0phi = sin(phi0+phi);
556
557 double rho;
558 if(cpa != 0.)rho = 1./cpa;
559 else rho = (DBL_MAX);
560
561 double charge = 1.;
562 if(cpa < 0.)charge = -1.;
563
564 dMDA[0][1] = -fabs(rho)*cosf0phi;
565 dMDA[0][2] = charge*rho*rho*sinf0phi;
566
567 dMDA[1][1] = -fabs(rho)*sinf0phi;
568 dMDA[1][2] = -charge*rho*rho*cosf0phi;
569
570 dMDA[2][2] = -charge*rho*rho*tnl;
571 dMDA[2][4] = fabs(rho);
572
573 return dMDA;
574}

Referenced by momentum().

◆ delXDelA()

HepMatrix VFHelix::delXDelA ( double  phi) const

Definition at line 487 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

487 {
488 //
489 // Calculate Jacobian (@x/@a)
490 // Vector a is helix parameters and phi is internal parameter
491 // which specifys the point to be calculated for Ex(phi).
492 //
493
494 HepMatrix dXDA(3,5,0);
495
496 const double & dr = m_ac[0];
497 const double & phi0 = m_ac[1];
498 const double & cpa = m_ac[2];
499 const double & dz = m_ac[3];
500 const double & tnl = m_ac[4];
501
502 double cosf0phi = cos(phi0 + phi);
503 double sinf0phi = sin(phi0 + phi);
504
505 dXDA[0][0] = m_cp;
506 dXDA[0][1] = - dr * m_sp + m_r * (- m_sp + sinf0phi);
507 if(cpa!=0.0) {
508 dXDA[0][2] = - (m_r / cpa) * (m_cp - cosf0phi);
509 } else {
510 dXDA[0][2] = (DBL_MAX);
511 }
512 // dXDA[0][3] = 0.0;
513 // dXDA[0][4] = 0.0;
514
515 dXDA[1][0] = m_sp;
516 dXDA[1][1] = dr * m_cp + m_r * (m_cp - cosf0phi);
517 if(cpa!=0.0) {
518 dXDA[1][2] = - (m_r / cpa) * (m_sp - sinf0phi);
519 } else {
520 dXDA[1][2] = (DBL_MAX);
521 }
522 // dXDA[1][3] = 0.0;
523 // dXDA[1][4] = 0.0;
524
525 // dXDA[2][0] = 0.0;
526 // dXDA[2][1] = 0.0;
527 if(cpa!=0.0) {
528 dXDA[2][2] = (m_r / cpa) * tnl * phi;
529 } else {
530 dXDA[2][2] = (DBL_MAX);
531 }
532 dXDA[2][3] = 1.0;
533 dXDA[2][4] = - m_r * phi;
534
535 return dXDA;
536}

Referenced by x().

◆ direction()

Hep3Vector VFHelix::direction ( double  dPhi = 0.) const
inline

returns direction vector after rotating angle dPhi in phi direction.

Definition at line 198 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

198 {
199 return momentum(phi).unit();
200}

◆ dr()

double VFHelix::dr ( void  ) const
inline

returns an element of parameters.

Definition at line 204 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

204 {
205 return m_ac[0];
206}

Referenced by del4MXDelA(), delApDelA(), delXDelA(), and pivot().

◆ dz()

double VFHelix::dz ( void  ) const
inline

Definition at line 222 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

222 {
223 return m_ac[3];
224}

Referenced by del4MXDelA(), delApDelA(), delXDelA(), and pivot().

◆ Ea() [1/2]

const HepSymMatrix & VFHelix::Ea ( const HepSymMatrix &  newdA)
inline

sets helix paramters and error matrix.

Definition at line 260 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

260 {
261 return m_Ea = i;
262}

◆ Ea() [2/2]

const HepSymMatrix & VFHelix::Ea ( void  ) const
inline

returns error matrix.

Definition at line 246 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

246 {
247 return m_Ea;
248}

Referenced by set().

◆ ignoreErrorMatrix()

void VFHelix::ignoreErrorMatrix ( void  )

unsets error matrix. Error calculations will be ignored after this function call until an error matrix be set again. 0 matrix will be return as a return value for error matrix when you call functions which returns an error matrix.

Definition at line 695 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

695 {
696 m_matrixValid = false;
697 m_Ea *= 0.;
698}

◆ kappa()

double VFHelix::kappa ( void  ) const
inline

Definition at line 216 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

216 {
217 return m_ac[2];
218}

Referenced by pivot().

◆ momentum() [1/5]

HepLorentzVector VFHelix::momentum ( double  dPhi,
double  mass 
) const

returns 4momentum vector after rotating angle dPhi in phi direction.

Definition at line 208 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

208 {
209 //
210 // Calculate momentum.
211 //
212 // Pt = | 1/kappa | (GeV/c)
213 //
214 // Px = -Pt * sin(phi0 + phi)
215 // Py = Pt * cos(phi0 + phi)
216 // Pz = Pt * tan(lambda)
217 //
218 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
219
220 double pt = fabs(m_pt);
221 double px = - pt * sin(m_ac[1] + phi);
222 double py = pt * cos(m_ac[1] + phi);
223 double pz = pt * m_ac[4];
224 double E = sqrt(pt*pt*(1.+m_ac[4]*m_ac[4])+mass*mass);
225
226 return HepLorentzVector(px, py, pz, E);
227}

◆ momentum() [2/5]

HepLorentzVector VFHelix::momentum ( double  dPhi,
double  mass,
HepPoint3D x,
HepSymMatrix &  Emx 
) const

returns 4momentum vector after rotating angle dPhi in phi direction.

Definition at line 256 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

259 {
260 //
261 // Calculate momentum.
262 //
263 // Pt = | 1/kappa | (GeV/c)
264 //
265 // Px = -Pt * sin(phi0 + phi)
266 // Py = Pt * cos(phi0 + phi)
267 // Pz = Pt * tan(lambda)
268 //
269 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
270
271 double pt = fabs(m_pt);
272 double px = - pt * sin(m_ac[1] + phi);
273 double py = pt * cos(m_ac[1] + phi);
274 double pz = pt * m_ac[4];
275 double E = sqrt(pt * pt * (1. + m_ac[4] * m_ac[4]) + mass * mass);
276
277 x.setX(m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi)));
278 x.setY(m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi)));
279 x.setZ(m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi);
280
281 if (m_matrixValid) Emx = m_Ea.similarity(del4MXDelA(phi,mass));
282 else Emx = m_Ea;
283
284 return HepLorentzVector(px, py, pz, E);
285}
Double_t x[10]
HepMatrix del4MXDelA(double phi, double mass) const

◆ momentum() [3/5]

HepLorentzVector VFHelix::momentum ( double  dPhi,
double  mass,
HepSymMatrix &  Em 
) const

returns 4momentum vector after rotating angle dPhi in phi direction.

Definition at line 231 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

231 {
232 //
233 // Calculate momentum.
234 //
235 // Pt = | 1/kappa | (GeV/c)
236 //
237 // Px = -Pt * sin(phi0 + phi)
238 // Py = Pt * cos(phi0 + phi)
239 // Pz = Pt * tan(lambda)
240 //
241 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
242
243 double pt = fabs(m_pt);
244 double px = - pt * sin(m_ac[1] + phi);
245 double py = pt * cos(m_ac[1] + phi);
246 double pz = pt * m_ac[4];
247 double E = sqrt(pt*pt*(1.+m_ac[4]*m_ac[4])+mass*mass);
248
249 if (m_matrixValid) Em = m_Ea.similarity(del4MDelA(phi,mass));
250 else Em = m_Ea;
251
252 return HepLorentzVector(px, py, pz, E);
253}
HepMatrix del4MDelA(double phi, double mass) const

◆ momentum() [4/5]

Hep3Vector VFHelix::momentum ( double  dPhi,
HepSymMatrix &  Em 
) const

returns momentum vector after rotating angle dPhi in phi direction.

Definition at line 185 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

185 {
186 //
187 // Calculate momentum.
188 //
189 // Pt = | 1/kappa | (GeV/c)
190 //
191 // Px = -Pt * sin(phi0 + phi)
192 // Py = Pt * cos(phi0 + phi)
193 // Pz = Pt * tan(lambda)
194 //
195
196 double pt = fabs(m_pt);
197 double px = - pt * sin(m_ac[1] + phi);
198 double py = pt * cos(m_ac[1] + phi);
199 double pz = pt * m_ac[4];
200
201 if (m_matrixValid) Em = m_Ea.similarity(delMDelA(phi));
202 else Em = m_Ea;
203
204 return Hep3Vector(px, py, pz);
205}
HepMatrix delMDelA(double phi) const

◆ momentum() [5/5]

Hep3Vector VFHelix::momentum ( double  dPhi = 0.) const

returns momentum vector after rotating angle dPhi in phi direction.

Definition at line 165 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

165 {
166 //
167 // Calculate momentum.
168 //
169 // Pt = | 1/kappa | (GeV/c)
170 //
171 // Px = -Pt * sin(phi0 + phi)
172 // Py = Pt * cos(phi0 + phi)
173 // Pz = Pt * tan(lambda)
174 //
175
176 double pt = fabs(m_pt);
177 double px = - pt * sin(m_ac[1] + phi);
178 double py = pt * cos(m_ac[1] + phi);
179 double pz = pt * m_ac[4];
180
181 return Hep3Vector(px, py, pz);
182}

◆ operator=()

VFHelix & VFHelix::operator= ( const VFHelix i)

Copy operator.

Definition at line 361 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

361 {
362 if (this == & i) return * this;
363
364 m_bField = i.m_bField;
365 m_alpha = i.m_alpha;
366 m_pivot = i.m_pivot;
367 m_a = i.m_a;
368 m_Ea = i.m_Ea;
369 m_matrixValid = i.m_matrixValid;
370
371 m_center = i.m_center;
372 m_cp = i.m_cp;
373 m_sp = i.m_sp;
374 m_pt = i.m_pt;
375 m_r = i.m_r;
376 m_ac[0] = i.m_ac[0];
377 m_ac[1] = i.m_ac[1];
378 m_ac[2] = i.m_ac[2];
379 m_ac[3] = i.m_ac[3];
380 m_ac[4] = i.m_ac[4];
381
382 return * this;
383}

◆ phi0()

double VFHelix::phi0 ( void  ) const
inline

Definition at line 210 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

210 {
211 return m_ac[1];
212}

Referenced by del4MDelA(), del4MXDelA(), delApDelA(), delMDelA(), delXDelA(), and pivot().

◆ pivot() [1/2]

const HepPoint3D & VFHelix::pivot ( const HepPoint3D newPivot)

sets pivot position.

Definition at line 289 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

289 {
290 const double & dr = m_ac[0];
291 const double & phi0 = m_ac[1];
292 const double & kappa = m_ac[2];
293 const double & dz = m_ac[3];
294 const double & tanl = m_ac[4];
295
296 double rdr = dr + m_r;
297 double phi = fmod(phi0 + M_PI4, M_PI2);
298 double csf0 = cos(phi);
299 double snf0 = (1. - csf0) * (1. + csf0);
300 snf0 = sqrt((snf0 > 0.) ? snf0 : 0.);
301 if(phi > M_PI) snf0 = - snf0;
302
303 double xc = m_pivot.x() + rdr * csf0;
304 double yc = m_pivot.y() + rdr * snf0;
305 double csf, snf;
306 if(m_r != 0.0) {
307 csf = (xc - newPivot.x()) / m_r;
308 snf = (yc - newPivot.y()) / m_r;
309 double anrm = sqrt(csf * csf + snf * snf);
310 if(anrm != 0.0) {
311 csf /= anrm;
312 snf /= anrm;
313 phi = atan2(snf, csf);
314 } else {
315 csf = 1.0;
316 snf = 0.0;
317 phi = 0.0;
318 }
319 } else {
320 csf = 1.0;
321 snf = 0.0;
322 phi = 0.0;
323 }
324 double phid = fmod(phi - phi0 + M_PI8, M_PI2);
325 if(phid > M_PI) phid = phid - M_PI2;
326 double drp = (m_pivot.x() + dr * csf0 + m_r * (csf0 - csf) - newPivot.x())
327 * csf
328 + (m_pivot.y() + dr * snf0 + m_r * (snf0 - snf) - newPivot.y()) * snf;
329 double dzp = m_pivot.z() + dz - m_r * tanl * phid - newPivot.z();
330
331 HepVector ap(5);
332 ap[0] = drp;
333 ap[1] = fmod(phi + M_PI4, M_PI2);
334 ap[2] = kappa;
335 ap[3] = dzp;
336 ap[4] = tanl;
337
338 // if (m_matrixValid) m_Ea.assign(delApDelA(ap) * m_Ea * delApDelA(ap).T());
339 if (m_matrixValid) m_Ea = m_Ea.similarity(delApDelA(ap));
340
341 m_a = ap;
342 m_pivot = newPivot;
343
344 //...Are these needed?...iw...
345 updateCache();
346 return m_pivot;
347}
HepMatrix delApDelA(const HepVector &ap) const

◆ pivot() [2/2]

◆ radius()

double VFHelix::radius ( void  ) const
inline

returns radious of helix.

Definition at line 192 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

192 {
193 return m_r;
194}

◆ set()

void VFHelix::set ( const HepPoint3D pivot,
const HepVector &  a,
const HepSymMatrix &  Ea 
)

sets helix pivot position, parameters, and error matrix.

Definition at line 350 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

352 {
353 m_pivot = pivot;
354 m_a = a;
355 m_Ea = Ea;
356 m_matrixValid = true;
357 updateCache();
358}

◆ sinPhi0()

double VFHelix::sinPhi0 ( void  ) const
inline

Definition at line 281 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

281 {
282 return m_sp;
283}

◆ tanl()

double VFHelix::tanl ( void  ) const
inline

Definition at line 228 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.

228 {
229 return m_ac[4];
230}

Referenced by pivot().

◆ x() [1/3]

double * VFHelix::x ( double  dPhi,
double  p[3] 
) const

Definition at line 127 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

127 {
128 //
129 // Calculate position (x,y,z) along helix.
130 //
131 // x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi))
132 // y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi))
133 // z = z0 + dz - (alpha / kappa) * tan(lambda) * phi
134 //
135
136 p[0] = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi));
137 p[1] = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi));
138 p[2] = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
139
140 return p;
141}

◆ x() [2/3]

HepPoint3D VFHelix::x ( double  dPhi,
HepSymMatrix &  Ex 
) const

returns position and convariance matrix(Ex) after rotation.

Definition at line 144 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

144 {
145 double x = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] +phi));
146 double y = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] +phi));
147 double z = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
148
149 //
150 // Calculate position error matrix.
151 // Ex(phi) = (@x/@a)(Ea)(@x/@a)^T, phi is deflection angle to specify the
152 // point to be calcualted.
153 //
154 // HepMatrix dXDA(3, 5, 0);
155 // dXDA = delXDelA(phi);
156 // Ex.assign(dXDA * m_Ea * dXDA.T());
157
158 if (m_matrixValid) Ex = m_Ea.similarity(delXDelA(phi));
159 else Ex = m_Ea;
160
161 return HepPoint3D(x, y, z);
162}
HepGeom::Point3D< double > HepPoint3D
HepPoint3D x(double dPhi=0.) const
returns position after rotating angle dPhi in phi direction.
HepMatrix delXDelA(double phi) const
double y[1000]

◆ x() [3/3]

HepPoint3D VFHelix::x ( double  dPhi = 0.) const

returns position after rotating angle dPhi in phi direction.

Definition at line 110 of file Analysis/VertexFit/VertexFit-00-02-91/src/Helix.cxx.

110 {
111 //
112 // Calculate position (x,y,z) along helix.
113 //
114 // x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi))
115 // y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi))
116 // z = z0 + dz - (alpha / kappa) * tan(lambda) * phi
117 //
118
119 double x = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] +phi));
120 double y = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] +phi));
121 double z = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
122
123 return HepPoint3D(x, y, z);
124}

Referenced by x().

Member Data Documentation

◆ ConstantAlpha

const double VFHelix::ConstantAlpha = 333.564095
static

Constant alpha for uniform field.

Definition at line 148 of file Analysis/VertexFit/VertexFit-00-02-91/VertexFit/Helix.h.


The documentation for this class was generated from the following files: