#include <TDFun_o.h>
Definition at line 7 of file TDFun_o.h.
◆ TDFun() [1/2]
◆ TDFun() [2/2]
rb::TDFun::TDFun |
( |
const double & |
E | ) |
|
|
inline |
Definition at line 16 of file TDFun_o.h.
16 {
17 double L = 2.*log(2.*E/
me);
21
22 fD0 = 1.+3./8.*fBeta+fBeta*fBeta/16.*(9./8. -
M_PI*
M_PI/3);
24 }
◆ ~TDFun()
◆ Eval() [1/2]
double rb::TDFun::Eval |
( |
const double & |
z | ) |
|
|
inline |
Definition at line 33 of file TDFun_o.h.
33 {
35
36
38 fb2*
fb2/8*(4*(1+z)*log(x)+(1+3*z*z)/x*log1p(-x)+5+z);
39 return D;
40 }
◆ Eval() [2/2]
double rb::TDFun::Eval |
( |
const double & |
z, |
|
|
const double & |
b2, |
|
|
const double & |
D0 |
|
) |
| |
|
inline |
Definition at line 42 of file TDFun_o.h.
42 {
44
45
46 double D = b2*pow(x,b2-1)*D0 - 0.5*b2*(1+z) -
47 b2*b2/8*(4*(1+z)*log(x)+(1+3*z*z)/x*log1p(-x)+5+z);
48 return D;
49 }
◆ EvalSoft() [1/2]
double rb::TDFun::EvalSoft |
( |
const double & |
x | ) |
|
|
inline |
Definition at line 51 of file TDFun_o.h.
51 {
53 double lx = log(x);
56
57
58 double D =
fD0 - t2*(0.5*(1+z) +
fb2/8*( 4*(1+z)*lx + 4 + (1+z))) -
59 fb2/8*t1*(1+3*z*z)*log1p(-x);
60 return D;
61 }
EvtComplex exp(const EvtComplex &c)
◆ EvalSoft() [2/2]
double rb::TDFun::EvalSoft |
( |
const double & |
x, |
|
|
const double & |
b2, |
|
|
const double & |
D0 |
|
) |
| |
|
inline |
Definition at line 63 of file TDFun_o.h.
63 {
65 double lx = log(x);
66 double t1 =
exp(-b2*lx);
68
69
70 double D = D0 - t2*(0.5*(1+z) + b2/8*( 4*(1+z)*lx + 4 + (1+z))) -
71 b2/8*t1*(1+3*z*z)*log1p(-x);
72 return D;
73 }
◆ GetBeta2()
double rb::TDFun::GetBeta2 |
( |
| ) |
const |
|
inline |
◆ GetD0()
double rb::TDFun::GetD0 |
( |
| ) |
const |
|
inline |
◆ GetiBeta2()
double rb::TDFun::GetiBeta2 |
( |
| ) |
const |
|
inline |
◆ GetiD0()
double rb::TDFun::GetiD0 |
( |
| ) |
const |
|
inline |
◆ fb2
◆ fD0
◆ fib2
◆ fiD0
The documentation for this class was generated from the following file: