Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolynomialPDF.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28// GEANT4 Class file
29//
30//
31// File name: G4PolynomialPDF
32//
33// Author: Jason Detwiler ([email protected])
34//
35// Creation date: Aug 2012
36//
37// Description: Evaluates, generates random numbers from, and evaluates
38// the inverse of a polynomial PDF, its CDF, and its first and second
39// derivative.
40//
41// -------------------------------------------------------------------
42
43#ifndef G4POLYNOMIALPDF_HH
44#define G4POLYNOMIALPDF_HH
45
46#include "globals.hh"
47#include <vector>
48
50{
51 public:
52 G4PolynomialPDF(size_t n = 0, const double* coeffs = nullptr,
53 G4double x1=0, G4double x2=1);
54
56 // Setters and Getters for coefficients
57 inline void SetNCoefficients(size_t n) { fCoefficients.resize(n); fChanged = true; }
58 inline size_t GetNCoefficients() const { return fCoefficients.size(); }
59 inline void SetCoefficients(const std::vector<G4double>& v) {
60 fCoefficients = v; fChanged = true; Simplify();
61 }
62 inline G4double GetCoefficient(size_t i) const { return fCoefficients[i]; }
63 void SetCoefficient(size_t i, G4double value, bool doSimplify);
64 void SetCoefficients(size_t n, const G4double* coeffs);
65 void Simplify();
66
67 // Set the domain over which random numbers are generated and over which
68 // the CDF is evaluated
69 void SetDomain(G4double x1, G4double x2);
70
71 // Normalize PDF to 1 over domain fX1 to fX2. Used internally by
72 // GetRandomX(), but the user may want to call this as well for evaluation
73 // purposes.
74 void Normalize();
75
76 // Evaluate (d/dx)^ddxPower f(x) (-1 <= ddxPower <= 2)
77 // ddxPower = -1 -> CDF;
78 // ddxPower = 0 -> PDF
79 // ddxPower = 1 -> PDF'
80 // ddxPower = 2 -> PDF''
81 G4double Evaluate(G4double x, G4int ddxPower = 0);
82
83 // Generate a random number from this PDF
85
86 // Set the tolerance to within negative minima are checked
87 inline void SetTolerance(G4double tolerance) { fTolerance = tolerance; }
88
89 // Find a value x between x1 and x2 at which ddxPower[PDF](x) = p.
90 // ddxPower = -1 -> CDF;
91 // ddxPower = 0 -> PDF
92 // ddxPower = 1 -> PDF'
93 // (ddxPower = 2 not implemented)
94 // Solves analytically when possible, and otherwise uses the Newton-Raphson
95 // method to find the zero of ddxPower[PDF](x) - p.
96 // If not found in range, returns the nearest boundary.
97 // Beware that if x1 and x2 are not set carefully there may be multiple
98 // solutions, and care is not taken to select a particular one among them.
99 // Returns x2 on error
100 G4double GetX( G4double p, G4double x1, G4double x2, G4int ddxPower = 0,
101 G4double guess = 1.e99, G4bool bisect = true );
102 inline G4double EvalInverseCDF(G4double p) { return GetX(p, fX1, fX2, -1, fX1 + p*(fX2-fX1)); }
104
105 void Dump();
106
107 protected:
108 // Checks for negative values between x1 and x2. Used by GetRandomX()
110
113 std::vector<G4double> fCoefficients;
117};
118
119#endif
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
void SetNCoefficients(size_t n)
size_t GetNCoefficients() const
G4double Evaluate(G4double x, G4int ddxPower=0)
void SetCoefficient(size_t i, G4double value, bool doSimplify)
G4double GetCoefficient(size_t i) const
std::vector< G4double > fCoefficients
G4PolynomialPDF(size_t n=0, const double *coeffs=nullptr, G4double x1=0, G4double x2=1)
G4bool HasNegativeMinimum(G4double x1, G4double x2)
G4double GetX(G4double p, G4double x1, G4double x2, G4int ddxPower=0, G4double guess=1.e99, G4bool bisect=true)
void SetDomain(G4double x1, G4double x2)
void SetTolerance(G4double tolerance)
G4double EvalInverseCDF(G4double p)
void SetCoefficients(const std::vector< G4double > &v)
G4double Bisect(G4double p, G4double x1, G4double x2)