Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ParticleHPFFFissionFS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// P. Arce, June-2014 Conversion neutron_hp to particle_hp
31//
33
35#include "G4SystemOfUnits.hh"
36
38{
39 auto it = FissionProductYieldData.begin();
40 while (it != FissionProductYieldData.end()) { // Loop checking, 11.05.2015, T. Koi
41 std::map<G4double, std::map<G4int, G4double>*>* firstLevel = it->second;
42 if (firstLevel != nullptr) {
43 auto it2 = firstLevel->begin();
44 while (it2 != firstLevel->end()) { // Loop checking, 11.05.2015, T. Koi
45 delete it2->second;
46 it2->second = 0;
47 firstLevel->erase(it2);
48 it2 = firstLevel->begin();
49 }
50 }
51 delete firstLevel;
52 it->second = 0;
53 FissionProductYieldData.erase(it);
54 it = FissionProductYieldData.begin();
55 }
56
57 auto ii = mMTInterpolation.begin();
58 while (ii != mMTInterpolation.end()) { // Loop checking, 11.05.2015, T. Koi
59 delete ii->second;
60 mMTInterpolation.erase(ii);
61 ii = mMTInterpolation.begin();
62 }
63}
64
67{
68 // G4cout << "G4ParticleHPFFFissionFS::Init" << G4endl;
69 G4String aString = "FF";
70
71 G4String tString = dirName;
72 G4bool dbool;
74 theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, tString, aString, dbool);
75 G4String filename = aFile.GetName();
76 theBaseA = aFile.GetA();
77 theBaseZ = aFile.GetZ();
78
79 // 3456
80 if (!dbool || (Z < 2.5 && (std::abs(theBaseZ - Z) > 0.0001 || std::abs(theBaseA - A) > 0.0001))) {
81 hasAnyData = false;
82 hasFSData = false;
83 hasXsec = false;
84 return; // no data for exactly this isotope.
85 }
86 // std::ifstream theData(filename, std::ios::in);
87 std::istringstream theData(std::ios::in);
89 G4double dummy;
90 if (!theData) {
91 // theData.close();
92 hasFSData = false;
93 hasXsec = false;
94 hasAnyData = false;
95 return; // no data for this FS for this isotope
96 }
97
98 hasFSData = true;
99 // MT Energy FPS Yield
100 // std::map< int , std::map< double , std::map< int , double >* >* > FisionProductYieldData;
101 while (theData.good()) // Loop checking, 11.05.2015, T. Koi
102 {
103 G4int iMT, iMF;
104 G4int imax;
105 // Reading the data
106 // MT MF AWR
107 theData >> iMT >> iMF >> dummy;
108 // nBlock
109 theData >> imax;
110 // if ( !theData.good() ) continue;
111 // Ei FPS Yield
112 auto mEnergyFSPData = new std::map<G4double, std::map<G4int, G4double>*>;
113
114 auto mInterporation = new std::map<G4double, G4int>;
115 for (G4int i = 0; i <= imax; i++) {
116 G4double YY = 0.0;
117 G4double Ei;
118 G4int jmax;
119 G4int ip;
120 // energy of incidence neutron
121 theData >> Ei;
122 // Number of data set followings
123 theData >> jmax;
124 // interpolation scheme
125 theData >> ip;
126 mInterporation->insert(std::pair<G4double, G4int>(Ei * eV, ip));
127 // nNumber nIP
128 auto mFSPYieldData = new std::map<G4int, G4double>;
129 for (G4int j = 0; j < jmax; j++) {
130 G4int FSP;
131 G4int mFSP;
132 G4double Y;
133 theData >> FSP >> mFSP >> Y;
134 G4int k = FSP * 100 + mFSP;
135 YY = YY + Y;
136 // if ( iMT == 454 )G4cout << iMT << " " << i << " " << j << " " << k << " " << Y << " " <<
137 // YY << G4endl;
138 mFSPYieldData->insert(std::pair<G4int, G4double>(k, YY));
139 }
140 mEnergyFSPData->insert(
141 std::pair<G4double, std::map<G4int, G4double>*>(Ei * eV, mFSPYieldData));
142 }
143
144 FissionProductYieldData.insert(
145 std::pair<G4int, std::map<G4double, std::map<G4int, G4double>*>*>(iMT, mEnergyFSPData));
146 mMTInterpolation.insert(std::pair<G4int, std::map<G4double, G4int>*>(iMT, mInterporation));
147 }
148 // theData.close();
149}
150
152{
154 // G4cout <<"G4ParticleHPFFFissionFS::ApplyYourself +"<<G4endl;
155 aResult = G4ParticleHPFissionBaseFS::ApplyYourself(nNeutrons);
156 return aResult;
157}
158
160 G4int& fragM)
161{
162 // G4cout << "G4ParticleHPFFFissionFS::GetAFissionFragment " << G4endl;
163
164 G4double rand = G4UniformRand();
165 // G4cout << rand << G4endl;
166
167 auto ptr = FissionProductYieldData.find(454);
168 if (ptr == FissionProductYieldData.end())
169 return;
170
171 auto mEnergyFSPData = ptr->second;
172
173 // It is not clear that the treatment of the scheme 2 on two-dimensional interpolation.
174 // So, here just use the closest energy point array of yield data.
175 // TK120531
176 G4double key_energy = DBL_MAX;
177 if (mEnergyFSPData->size() == 1) {
178 key_energy = mEnergyFSPData->cbegin()->first;
179 }
180 else {
181 // Find closest energy point
182 G4double Dmin = DBL_MAX;
183 for (auto it = mEnergyFSPData->cbegin(); it != mEnergyFSPData->cend(); ++it) {
184 G4double e = (it->first);
185 G4double d = std::fabs(energy - e);
186 if (d < Dmin) {
187 Dmin = d;
188 key_energy = e;
189 }
190 }
191 }
192
193 std::map<G4int, G4double>* mFSPYieldData = (*mEnergyFSPData)[key_energy];
194
195 G4int ifrag = 0;
196 G4double ceilling =
197 mFSPYieldData->rbegin()->second; // Because of numerical accuracy, this is not always 2
198 for (auto it = mFSPYieldData->cbegin(); it != mFSPYieldData->cend(); ++it) {
199 // if ( ( rand - it->second/ceilling ) < 1.0e-6 ) std::cout << rand - it->second/ceilling <<
200 // std::endl;
201 if (rand <= it->second / ceilling) {
202 // G4cout << it->first << " " << it->second/ceilling << G4endl;
203 ifrag = it->first;
204 break;
205 }
206 }
207
208 fragZ = ifrag / 100000;
209 fragA = (ifrag % 100000) / 100;
210 fragM = (ifrag % 100);
211
212 // G4cout << fragZ << " " << fragA << " " << fragM << G4endl;
213}
G4double Y(G4double density)
std::vector< G4DynamicParticle * > G4DynamicParticleVector
#define M(row, col)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4UniformRand()
Definition Randomize.hh:52
G4DynamicParticleVector * ApplyYourself(G4int nNeutrons)
void GetAFissionFragment(G4double, G4int &, G4int &, G4int &)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *) override
G4DynamicParticleVector * ApplyYourself(G4int Prompt)
void GetDataStream(const G4String &, std::istringstream &iss)
static G4ParticleHPManager * GetInstance()
G4ParticleHPDataUsed GetName(G4int A, G4int Z, const G4String &base, const G4String &rest, G4bool &active)
#define DBL_MAX
Definition templates.hh:62