Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4SampleResonance.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// ------------------------------------------------------------
29// GEANT 4 class header file
30//
31// ---------------- G4SampleResonance ----------------
32// by Henning Weber, March 2001.
33// helper class for sampling resonance masses
34// ------------------------------------------------------------
35
36
37#include "globals.hh"
38#include <iostream>
39#include "G4SampleResonance.hh"
40#include "G4DecayTable.hh"
41#include "Randomize.hh"
43
44G4ThreadLocal G4SampleResonance::minMassMapType *G4SampleResonance::minMassCache_G4MT_TLS_ = 0;
45
47{ ;;; if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ; G4SampleResonance::minMassMapType &minMassCache = *minMassCache_G4MT_TLS_; ;;;
48
49 G4double minResonanceMass = DBL_MAX;
50
51 if ( p->IsShortLived() )
52 {
53 minMassMapIterator iter = minMassCache.find(p);
54 if ( iter!=minMassCache.end() )
55 {
56 minResonanceMass = (*iter).second;
57 }
58 else
59 {
60 // G4cout << "--> request for " << p->GetParticleName() << G4endl;
61
62 const G4DecayTable* theDecays = p->GetDecayTable();
63 const G4int nDecays = theDecays->entries();
64
65 // To find the minimum mass of the resonance, consider only the
66 // decay channels whose branching ratio is above a given threshold.
67 // This is needed to avoid that rare and light decay channels
68 // (e.g. e+ e-) can set a very small minimum mass of the resonance.
69 // In the case that no channel with branching ratio above the
70 // threshold has been found, consider the channel with the highest
71 // branching ratio (whatever its values).
72 // Note that this solution works also when rare decays are artificially
73 // enhanced if both of the following conditions hold:
74 // 1. The enhanced rare decays have branching ratios below the threshold
75 // 2. The decay with the highest branching ratio is a "natural" decay,
76 // i.e. not a rare decay which has been artificially enhanced.
77 const G4double thresholdChannelProbability = 0.10;
78 G4double foundChannelAboveThresholdProbability = false;
79 G4double minMassMostProbableChannel = 0.0;
80 G4double highestChannelProbability = 0.0;
81 for (G4int i=0; i<nDecays; i++)
82 {
83 const G4VDecayChannel* aDecay = theDecays->GetDecayChannel(i);
84 G4double decayBr = aDecay->GetBR();
85 if (decayBr > std::min(highestChannelProbability, thresholdChannelProbability))
86 {
87 const G4int nDaughters = aDecay->GetNumberOfDaughters();
88 G4double minChannelMass = 0;
89 for (G4int j=0; j<nDaughters; j++)
90 {
91 const G4ParticleDefinition* aDaughter = const_cast<G4VDecayChannel*>(aDecay)->GetDaughter(j);
92 G4double minMass = GetMinimumMass(aDaughter);
93 if (!minMass) minMass = DBL_MAX; // exclude gamma channel;
94 minChannelMass+=minMass;
95 }
96 if (decayBr > highestChannelProbability)
97 {
98 highestChannelProbability = decayBr;
99 minMassMostProbableChannel = minChannelMass;
100 }
101 if (decayBr > thresholdChannelProbability)
102 {
103 foundChannelAboveThresholdProbability = true;
104 if (minChannelMass < minResonanceMass) minResonanceMass = minChannelMass;
105 }
106 }
107 }
108 if ( ! foundChannelAboveThresholdProbability ) {
109 minResonanceMass = minMassMostProbableChannel;
110 }
111 // replace this as soon as the compiler supports mutable!!
112 G4SampleResonance* self = const_cast<G4SampleResonance*>(this);
113 //Andrea Dotti (13Jan2013): Change needed for G4MT
114 //(self->minMassCache)[p] = minResonanceMass;
115 self->minMassCache_G4MT_TLS_->operator[](p) = minResonanceMass;
116
117 }
118 }
119 else
120 {
121
122 minResonanceMass = p->GetPDGMass();
123
124 }
125 // G4cout << "minimal mass for " << p->GetParticleName() << " is " << minResonanceMass/MeV << G4endl;
126
127 return minResonanceMass;
128}
129
130
131
133{ if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ;
134 return SampleMass(p->GetPDGMass(), p->GetPDGWidth(), GetMinimumMass(p), maxMass);
135}
136
137
139 const G4double gamma,
140 const G4double minMass,
141 const G4double maxMass) const
142{ if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ;
143 // Chooses a mass randomly between minMass and maxMass
144 // according to a Breit-Wigner function with constant
145 // width gamma and pole poleMass
146
147
148 //AR-14Nov2017 : protection for rare cases when a wide parent resonance, with a very small
149 // dynamic mass, decays into another wide (daughter) resonance: it can happen
150 // then that for the daugther resonance minMass > maxMass : in these cases,
151 // do not crash, but simply consider maxMass as the minimal mass for
152 // the sampling of the daughter resonance mass.
153 G4double protectedMinMass = minMass;
154 if ( minMass > maxMass )
155 {
156 //throw G4HadronicException(__FILE__, __LINE__,
157 // "SampleResonanceMass: mass range negative (minMass>maxMass)");
158 protectedMinMass = maxMass;
159 }
160
161 G4double returnMass;
162
163 if ( gamma < DBL_EPSILON )
164 {
165 returnMass = std::max(minMass, std::min(maxMass, poleMass));
166 }
167 else
168 {
169 //double fmin = BrWigInt0(minMass, gamma, poleMass);
170 double fmin = BrWigInt0(protectedMinMass, gamma, poleMass);
171 double fmax = BrWigInt0(maxMass, gamma, poleMass);
172 double f = fmin + (fmax-fmin)*G4UniformRand();
173 returnMass = BrWigInv(f, gamma, poleMass);
174 }
175
176 return returnMass;
177}
178
179
180
181
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
#define G4UniformRand()
Definition Randomize.hh:52
G4VDecayChannel * GetDecayChannel(G4int index) const
G4int entries() const
G4DecayTable * GetDecayTable() const
std::map< constG4ParticleDefinition *, G4double, std::less< constG4ParticleDefinition * > >::const_iterator minMassMapIterator
G4double SampleMass(const G4double poleMass, const G4double gamma, const G4double minMass, const G4double maxMass) const
G4double GetMinimumMass(const G4ParticleDefinition *p) const
std::map< const G4ParticleDefinition *, G4double, std::less< const G4ParticleDefinition * > > minMassMapType
G4double GetBR() const
G4int GetNumberOfDaughters() const
#define DBL_EPSILON
Definition templates.hh:66
#define DBL_MAX
Definition templates.hh:62
#define G4ThreadLocal
Definition tls.hh:77