Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ICRU49NuclearStoppingModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4ICRU49NuclearStoppingModel
33//
34// Author: V.Ivanchenko
35//
36// Creation date: 09.04.2008 from G4MuMscModel
37//
38// Modifications:
39//
40//
41// Class Description:
42//
43// Implementation of the model of ICRU'49 nuclear stopping
44
45// -------------------------------------------------------------------
46//
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
49//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
50
53#include "G4SystemOfUnits.hh"
54#include "Randomize.hh"
55#include "G4LossTableManager.hh"
57#include "G4ElementVector.hh"
59#include "G4Step.hh"
60#include "G4AutoLock.hh"
61#include "G4Pow.hh"
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
64
65G4double G4ICRU49NuclearStoppingModel::Z23[] = {0.0};
66
67namespace
68{
69 G4Mutex ICRU49NuclearMutex = G4MUTEX_INITIALIZER;
70}
71
73 : G4VEmModel(nam)
74{
75 theZieglerFactor = eV*cm2*1.0e-15;
76 g4calc = G4Pow::GetInstance();
77 InitialiseArray();
78}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
81
83
84//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
85
89
90//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
91
92void G4ICRU49NuclearStoppingModel::InitialiseArray()
93{
94 if(0.0 != Z23[1]) { return; }
95 G4AutoLock l(&ICRU49NuclearMutex);
96 if(0.0 == Z23[1]) {
97 for(G4int i=2; i<100; ++i) {
98 Z23[i] = g4calc->powZ(i, 0.23);
99 }
100 Z23[1] = 1.0;
101 }
102 l.unlock();
103}
104
105//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
106
107void
109 std::vector<G4DynamicParticle*>*,
111 const G4DynamicParticle*,
113{}
114
115//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
116
119 const G4Material* mat,
120 const G4ParticleDefinition* p,
121 G4double kinEnergy,
122 G4double)
123{
124 G4double nloss = 0.0;
125 if(kinEnergy <= 0.0) { return nloss; }
126
127 // projectile
128 G4double mass1 = p->GetPDGMass();
129 G4double z1 = std::abs(p->GetPDGCharge()/eplus);
130
131 if(kinEnergy*proton_mass_c2/mass1 > z1*z1*MeV) { return nloss; }
132
133 // Projectile nucleus
134 mass1 /= amu_c2;
135
136 // loop for the elements in the material
137 std::size_t numberOfElements = mat->GetNumberOfElements();
138 const G4ElementVector* theElementVector = mat->GetElementVector();
139 const G4double* atomDensity = mat->GetAtomicNumDensityVector();
140
141 for (std::size_t iel=0; iel<numberOfElements; ++iel) {
142 const G4Element* element = (*theElementVector)[iel] ;
143 G4double z2 = element->GetZ();
144 G4double mass2 = element->GetN();
145 nloss += (NuclearStoppingPower(kinEnergy, z1, z2, mass1, mass2))
146 * atomDensity[iel];
147 }
148 nloss *= theZieglerFactor;
149 //G4cout << " nloss= " << nloss << G4endl;
150 return nloss;
151}
152
153//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
154
156G4ICRU49NuclearStoppingModel::NuclearStoppingPower(G4double kineticEnergy,
157 G4double z1, G4double z2,
158 G4double mass1, G4double mass2)
159{
160 G4double energy = kineticEnergy/keV ; // energy in keV
161 G4double nloss = 0.0;
162 G4double z12 = z1*z2;
163 G4int iz1 = std::min(99, G4lrint(z1));
164 G4int iz2 = std::min(99, G4lrint(z2));
165
166 G4double rm;
167 if(z1 > 1.5) {
168 rm = (mass1 + mass2)*(Z23[iz1] + Z23[iz2]);
169 } else {
170 rm = (mass1 + mass2)*g4calc->Z13(G4lrint(z2));
171 }
172 G4double er = 32.536 * mass2 * energy / ( z12 * rm ) ; // reduced energy
173 /*
174 G4cout << " z1= " << iz1 << " z2= " << iz2 << " mass1= " << mass1
175 << " mass2= " << mass2 << " er= " << er << G4endl;
176 */
177 static const G4double nuca[104][2] = {
178 { 1.0E+8, 5.831E-8},
179 { 8.0E+7, 7.288E-8},
180 { 6.0E+7, 9.719E-8},
181 { 5.0E+7, 1.166E-7},
182 { 4.0E+7, 1.457E-7},
183 { 3.0E+7, 1.942E-7},
184 { 2.0E+7, 2.916E-7},
185 { 1.5E+7, 3.887E-7},
186
187 { 1.0E+7, 5.833E-7},
188 { 8.0E+6, 7.287E-7},
189 { 6.0E+6, 9.712E-7},
190 { 5.0E+6, 1.166E-6},
191 { 4.0E+6, 1.457E-6},
192 { 3.0E+6, 1.941E-6},
193 { 2.0E+6, 2.911E-6},
194 { 1.5E+6, 3.878E-6},
195
196 { 1.0E+6, 5.810E-6},
197 { 8.0E+5, 7.262E-6},
198 { 6.0E+5, 9.663E-6},
199 { 5.0E+5, 1.157E-5},
200 { 4.0E+5, 1.442E-5},
201 { 3.0E+5, 1.913E-5},
202 { 2.0E+5, 2.845E-5},
203 { 1.5E+5, 3.762E-5},
204
205 { 1.0E+5, 5.554E-5},
206 { 8.0E+4, 6.866E-5},
207 { 6.0E+4, 9.020E-5},
208 { 5.0E+4, 1.070E-4},
209 { 4.0E+4, 1.319E-4},
210 { 3.0E+4, 1.722E-4},
211 { 2.0E+4, 2.499E-4},
212 { 1.5E+4, 3.248E-4},
213
214 { 1.0E+4, 4.688E-4},
215 { 8.0E+3, 5.729E-4},
216 { 6.0E+3, 7.411E-4},
217 { 5.0E+3, 8.718E-4},
218 { 4.0E+3, 1.063E-3},
219 { 3.0E+3, 1.370E-3},
220 { 2.0E+3, 1.955E-3},
221 { 1.5E+3, 2.511E-3},
222
223 { 1.0E+3, 3.563E-3},
224 { 8.0E+2, 4.314E-3},
225 { 6.0E+2, 5.511E-3},
226 { 5.0E+2, 6.430E-3},
227 { 4.0E+2, 7.756E-3},
228 { 3.0E+2, 9.855E-3},
229 { 2.0E+2, 1.375E-2},
230 { 1.5E+2, 1.736E-2},
231
232 { 1.0E+2, 2.395E-2},
233 { 8.0E+1, 2.850E-2},
234 { 6.0E+1, 3.552E-2},
235 { 5.0E+1, 4.073E-2},
236 { 4.0E+1, 4.802E-2},
237 { 3.0E+1, 5.904E-2},
238 { 1.5E+1, 9.426E-2},
239
240 { 1.0E+1, 1.210E-1},
241 { 8.0E+0, 1.377E-1},
242 { 6.0E+0, 1.611E-1},
243 { 5.0E+0, 1.768E-1},
244 { 4.0E+0, 1.968E-1},
245 { 3.0E+0, 2.235E-1},
246 { 2.0E+0, 2.613E-1},
247 { 1.5E+0, 2.871E-1},
248
249 { 1.0E+0, 3.199E-1},
250 { 8.0E-1, 3.354E-1},
251 { 6.0E-1, 3.523E-1},
252 { 5.0E-1, 3.609E-1},
253 { 4.0E-1, 3.693E-1},
254 { 3.0E-1, 3.766E-1},
255 { 2.0E-1, 3.803E-1},
256 { 1.5E-1, 3.788E-1},
257
258 { 1.0E-1, 3.711E-1},
259 { 8.0E-2, 3.644E-1},
260 { 6.0E-2, 3.530E-1},
261 { 5.0E-2, 3.444E-1},
262 { 4.0E-2, 3.323E-1},
263 { 3.0E-2, 3.144E-1},
264 { 2.0E-2, 2.854E-1},
265 { 1.5E-2, 2.629E-1},
266
267 { 1.0E-2, 2.298E-1},
268 { 8.0E-3, 2.115E-1},
269 { 6.0E-3, 1.883E-1},
270 { 5.0E-3, 1.741E-1},
271 { 4.0E-3, 1.574E-1},
272 { 3.0E-3, 1.372E-1},
273 { 2.0E-3, 1.116E-1},
274 { 1.5E-3, 9.559E-2},
275
276 { 1.0E-3, 7.601E-2},
277 { 8.0E-4, 6.668E-2},
278 { 6.0E-4, 5.605E-2},
279 { 5.0E-4, 5.008E-2},
280 { 4.0E-4, 4.352E-2},
281 { 3.0E-4, 3.617E-2},
282 { 2.0E-4, 2.768E-2},
283 { 1.5E-4, 2.279E-2},
284
285 { 1.0E-4, 1.723E-2},
286 { 8.0E-5, 1.473E-2},
287 { 6.0E-5, 1.200E-2},
288 { 5.0E-5, 1.052E-2},
289 { 4.0E-5, 8.950E-3},
290 { 3.0E-5, 7.246E-3},
291 { 2.0E-5, 5.358E-3},
292 { 1.5E-5, 4.313E-3},
293 { 0.0, 3.166E-3}
294 };
295
296 if (er >= nuca[0][0]) { nloss = nuca[0][1]; }
297 else {
298 // the table is inverse in energy
299 for (G4int i=102; i>=0; --i) {
300 G4double edi = nuca[i][0];
301 if (er <= edi) {
302 G4double edi1 = nuca[i+1][0];
303 G4double ai = nuca[i][1];
304 G4double ai1 = nuca[i+1][1];
305 nloss = (ai - ai1)*(er - edi1)/(edi - edi1) + ai1;
306 break;
307 }
308 }
309 }
310
311 // Stragling
312 if(lossFlucFlag) {
313 G4double sig = 4.0 * mass1 * mass2 / ((mass1 + mass2)*(mass1 + mass2)*
314 (4.0 + 0.197/(er*er) + 6.584/er));
315
316 nloss *= G4RandGauss::shoot(1.0,sig);
317 }
318
319 nloss *= 8.462 * z12 * mass1 / rm; // Return to [ev/(10^15 atoms/cm^2]
320
321 nloss = std::max(nloss, 0.0);
322 return nloss;
323}
324
325//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
std::vector< const G4Element * > G4ElementVector
#define G4MUTEX_INITIALIZER
std::mutex G4Mutex
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4double GetZ() const
Definition G4Element.hh:119
G4double GetN() const
Definition G4Element.hh:123
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double, G4double) final
void Initialise(const G4ParticleDefinition *, const G4DataVector &) final
G4ICRU49NuclearStoppingModel(const G4String &nam="ICRU49NucStopping")
~G4ICRU49NuclearStoppingModel() override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX) final
const G4ElementVector * GetElementVector() const
const G4double * GetAtomicNumDensityVector() const
std::size_t GetNumberOfElements() const
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powZ(G4int Z, G4double y) const
Definition G4Pow.hh:225
G4double Z13(G4int Z) const
Definition G4Pow.hh:123
G4bool lossFlucFlag
G4double energy(const ThreeVector &p, const G4double m)
int G4lrint(double ad)
Definition templates.hh:134