Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PhysicsVector.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4PhysicsVector class implementation
27//
28// Authors:
29// - 02 Dec. 1995, G.Cosmo: Structure created based on object model
30// - 03 Mar. 1996, K.Amako: Implemented the 1st version
31// Revisions:
32// - 11 Nov. 2000, H.Kurashige: Use STL vector for dataVector and binVector
33// --------------------------------------------------------------------
34
35#include "G4PhysicsVector.hh"
36#include <iomanip>
37
38// --------------------------------------------------------------
40 : useSpline(val)
41{}
42
43// --------------------------------------------------------------------
45{
46 if (1 < numberOfNodes)
47 {
49 edgeMin = binVector[0];
51 }
52}
53
54// --------------------------------------------------------------
55G4bool G4PhysicsVector::Store(std::ofstream& fOut, G4bool ascii) const
56{
57 // Ascii mode
58 if (ascii)
59 {
60 fOut << *this;
61 return true;
62 }
63 // Binary Mode
64
65 // binning
66 fOut.write((char*) (&edgeMin), sizeof edgeMin);
67 fOut.write((char*) (&edgeMax), sizeof edgeMax);
68 fOut.write((char*) (&numberOfNodes), sizeof numberOfNodes);
69
70 // contents
71 std::size_t size = dataVector.size();
72 fOut.write((char*) (&size), sizeof size);
73
74 G4double* value = new G4double[2 * size];
75 for (std::size_t i = 0; i < size; ++i)
76 {
77 value[2 * i] = binVector[i];
78 value[2 * i + 1] = dataVector[i];
79 }
80 fOut.write((char*) (value), 2 * size * (sizeof(G4double)));
81 delete[] value;
82
83 return true;
84}
85
86// --------------------------------------------------------------
87G4bool G4PhysicsVector::Retrieve(std::ifstream& fIn, G4bool ascii)
88{
89 // clear properties;
90 dataVector.clear();
91 binVector.clear();
92 secDerivative.clear();
93
94 // retrieve in ascii mode
95 if (ascii)
96 {
97 // binning
98 fIn >> edgeMin >> edgeMax >> numberOfNodes;
99 if (fIn.fail() || numberOfNodes < 2)
100 {
101 return false;
102 }
103 // contents
104 G4int siz0 = 0;
105 fIn >> siz0;
106 if (siz0 < 2) { return false; }
107 std::size_t siz = static_cast<std::size_t>(siz0);
108 if (fIn.fail() || siz != numberOfNodes)
109 {
110 return false;
111 }
112
113 binVector.reserve(siz);
114 dataVector.reserve(siz);
115 G4double vBin, vData;
116
117 for (std::size_t i = 0; i < siz; ++i)
118 {
119 vBin = 0.;
120 vData = 0.;
121 fIn >> vBin >> vData;
122 if (fIn.fail())
123 {
124 return false;
125 }
126 binVector.push_back(vBin);
127 dataVector.push_back(vData);
128 }
129 Initialise();
130 return true;
131 }
132
133 // retrieve in binary mode
134 // binning
135 fIn.read((char*) (&edgeMin), sizeof edgeMin);
136 fIn.read((char*) (&edgeMax), sizeof edgeMax);
137 fIn.read((char*) (&numberOfNodes), sizeof numberOfNodes);
138
139 // contents
140 std::size_t size;
141 fIn.read((char*) (&size), sizeof size);
142
143 G4double* value = new G4double[2 * size];
144 fIn.read((char*) (value), 2 * size * (sizeof(G4double)));
145 if (static_cast<G4int>(fIn.gcount()) != static_cast<G4int>(2 * size * (sizeof(G4double))))
146 {
147 delete[] value;
148 return false;
149 }
150
151 binVector.reserve(size);
152 dataVector.reserve(size);
153 for (std::size_t i = 0; i < size; ++i)
154 {
155 binVector.push_back(value[2 * i]);
156 dataVector.push_back(value[2 * i + 1]);
157 }
158 delete[] value;
159
160 Initialise();
161 return true;
162}
163
164// --------------------------------------------------------------
166{
167 for (std::size_t i = 0; i < numberOfNodes; ++i)
168 {
169 G4cout << binVector[i] / unitE << " " << dataVector[i] / unitV
170 << G4endl;
171 }
172}
173
174// --------------------------------------------------------------------
175std::size_t G4PhysicsVector::FindBin(const G4double energy,
176 std::size_t idx) const
177{
178 if (idx + 1 < numberOfNodes &&
179 energy >= binVector[idx] && energy <= binVector[idx])
180 {
181 return idx;
182 }
183 if (energy <= binVector[1])
184 {
185 return 0;
186 }
187 if (energy >= binVector[idxmax])
188 {
189 return idxmax;
190 }
191 return GetBin(energy);
192}
193
194// --------------------------------------------------------------------
196 const G4double factorV)
197{
198 for (std::size_t i = 0; i < numberOfNodes; ++i)
199 {
200 binVector[i] *= factorE;
201 dataVector[i] *= factorV;
202 }
203 Initialise();
204}
205
206// --------------------------------------------------------------------
208 const G4double dir1,
209 const G4double dir2)
210{
211 if (!useSpline) { return; }
212 // cannot compute derivatives for less than 5 points
213 const std::size_t nmin = (stype == G4SplineType::Base) ? 5 : 4;
214 if (nmin > numberOfNodes)
215 {
216 if (0 < verboseLevel)
217 {
218 G4cout << "### G4PhysicsVector: spline cannot be used for "
219 << numberOfNodes << " points - spline disabled"
220 << G4endl;
221 DumpValues();
222 }
223 useSpline = false;
224 return;
225 }
226 // check energies of free vector
228 {
229 for (std::size_t i=0; i<=idxmax; ++i)
230 {
231 if (binVector[i + 1] <= binVector[i])
232 {
233 if (0 < verboseLevel)
234 {
235 G4cout << "### G4PhysicsVector: spline cannot be used, because "
236 << " E[" << i << "]=" << binVector[i]
237 << " >= E[" << i+1 << "]=" << binVector[i + 1]
238 << G4endl;
239 DumpValues();
240 }
241 useSpline = false;
242 return;
243 }
244 }
245 }
246
247 // spline is possible
248 Initialise();
250
251 if (1 < verboseLevel)
252 {
253 G4cout << "### G4PhysicsVector:: FillSecondDerivatives N="
254 << numberOfNodes << G4endl;
255 DumpValues();
256 }
257
258 switch(stype)
259 {
261 ComputeSecDerivative1();
262 break;
263
265 ComputeSecDerivative2(dir1, dir2);
266 break;
267
268 default:
269 ComputeSecDerivative0();
270 }
271}
272
273// --------------------------------------------------------------
274void G4PhysicsVector::ComputeSecDerivative0()
275// A simplified method of computation of second derivatives
276{
277 std::size_t n = numberOfNodes - 1;
278
279 for (std::size_t i = 1; i < n; ++i)
280 {
281 secDerivative[i] = 3.0 *
282 ((dataVector[i + 1] - dataVector[i]) / (binVector[i + 1] - binVector[i]) -
283 (dataVector[i] - dataVector[i - 1]) /
284 (binVector[i] - binVector[i - 1])) /
285 (binVector[i + 1] - binVector[i - 1]);
286 }
289}
290
291// --------------------------------------------------------------
292void G4PhysicsVector::ComputeSecDerivative1()
293// Computation of second derivatives using "Not-a-knot" endpoint conditions
294// B.I. Kvasov "Methods of shape-preserving spline approximation"
295// World Scientific, 2000
296{
297 std::size_t n = numberOfNodes - 1;
298 G4double* u = new G4double[n];
299 G4double p, sig;
300
301 u[1] = ((dataVector[2] - dataVector[1]) / (binVector[2] - binVector[1]) -
302 (dataVector[1] - dataVector[0]) / (binVector[1] - binVector[0]));
303 u[1] = 6.0 * u[1] * (binVector[2] - binVector[1]) /
304 ((binVector[2] - binVector[0]) * (binVector[2] - binVector[0]));
305
306 // Decomposition loop for tridiagonal algorithm. secDerivative[i]
307 // and u[i] are used for temporary storage of the decomposed factors.
308
309 secDerivative[1] = (2.0 * binVector[1] - binVector[0] - binVector[2]) /
310 (2.0 * binVector[2] - binVector[0] - binVector[1]);
311
312 for(std::size_t i = 2; i < n - 1; ++i)
313 {
314 sig =
315 (binVector[i] - binVector[i - 1]) / (binVector[i + 1] - binVector[i - 1]);
316 p = sig * secDerivative[i - 1] + 2.0;
317 secDerivative[i] = (sig - 1.0) / p;
318 u[i] =
319 (dataVector[i + 1] - dataVector[i]) / (binVector[i + 1] - binVector[i]) -
320 (dataVector[i] - dataVector[i - 1]) / (binVector[i] - binVector[i - 1]);
321 u[i] =
322 (6.0 * u[i] / (binVector[i + 1] - binVector[i - 1])) - sig * u[i - 1] / p;
323 }
324
325 sig =
326 (binVector[n - 1] - binVector[n - 2]) / (binVector[n] - binVector[n - 2]);
327 p = sig * secDerivative[n - 3] + 2.0;
328 u[n - 1] =
329 (dataVector[n] - dataVector[n - 1]) / (binVector[n] - binVector[n - 1]) -
330 (dataVector[n - 1] - dataVector[n - 2]) /
331 (binVector[n - 1] - binVector[n - 2]);
332 u[n - 1] = 6.0 * sig * u[n - 1] / (binVector[n] - binVector[n - 2]) -
333 (2.0 * sig - 1.0) * u[n - 2] / p;
334
335 p = (1.0 + sig) + (2.0 * sig - 1.0) * secDerivative[n - 2];
336 secDerivative[n - 1] = u[n - 1] / p;
337
338 // The back-substitution loop for the triagonal algorithm of solving
339 // a linear system of equations.
340
341 for (std::size_t k = n - 2; k > 1; --k)
342 {
343 secDerivative[k] *=
344 (secDerivative[k + 1] - u[k] * (binVector[k + 1] - binVector[k - 1]) /
345 (binVector[k + 1] - binVector[k]));
346 }
348 (secDerivative[n - 1] - (1.0 - sig) * secDerivative[n - 2]) / sig;
349 sig = 1.0 - ((binVector[2] - binVector[1]) / (binVector[2] - binVector[0]));
350 secDerivative[1] *= (secDerivative[2] - u[1] / (1.0 - sig));
351 secDerivative[0] = (secDerivative[1] - sig * secDerivative[2]) / (1.0 - sig);
352
353 delete[] u;
354}
355
356// --------------------------------------------------------------
357void G4PhysicsVector::ComputeSecDerivative2(G4double firstPointDerivative,
358 G4double endPointDerivative)
359// A standard method of computation of second derivatives
360// First derivatives at the first and the last point should be provided
361// See for example W.H. Press et al. "Numerical recipes in C"
362// Cambridge University Press, 1997.
363{
364 std::size_t n = numberOfNodes - 1;
365 G4double* u = new G4double[n];
366 G4double p, sig, un;
367
368 u[0] = (6.0 / (binVector[1] - binVector[0])) *
369 ((dataVector[1] - dataVector[0]) / (binVector[1] - binVector[0]) -
370 firstPointDerivative);
371
372 secDerivative[0] = -0.5;
373
374 // Decomposition loop for tridiagonal algorithm. secDerivative[i]
375 // and u[i] are used for temporary storage of the decomposed factors.
376
377 for (std::size_t i = 1; i < n; ++i)
378 {
379 sig =
380 (binVector[i] - binVector[i - 1]) / (binVector[i + 1] - binVector[i - 1]);
381 p = sig * (secDerivative[i - 1]) + 2.0;
382 secDerivative[i] = (sig - 1.0) / p;
383 u[i] =
384 (dataVector[i + 1] - dataVector[i]) / (binVector[i + 1] - binVector[i]) -
385 (dataVector[i] - dataVector[i - 1]) / (binVector[i] - binVector[i - 1]);
386 u[i] =
387 6.0 * u[i] / (binVector[i + 1] - binVector[i - 1]) - sig * u[i - 1] / p;
388 }
389
390 sig =
391 (binVector[n - 1] - binVector[n - 2]) / (binVector[n] - binVector[n - 2]);
392 p = sig * secDerivative[n - 2] + 2.0;
393 un = (6.0 / (binVector[n] - binVector[n - 1])) *
394 (endPointDerivative - (dataVector[n] - dataVector[n - 1]) /
395 (binVector[n] - binVector[n - 1])) -
396 u[n - 1] / p;
397 secDerivative[n] = un / (secDerivative[n - 1] + 2.0);
398
399 // The back-substitution loop for the triagonal algorithm of solving
400 // a linear system of equations.
401
402 for (std::size_t k = n - 1; k > 0; --k)
403 {
404 secDerivative[k] *=
405 (secDerivative[k + 1] - u[k] * (binVector[k + 1] - binVector[k - 1]) /
406 (binVector[k + 1] - binVector[k]));
407 }
408 secDerivative[0] = 0.5 * (u[0] - secDerivative[1]);
409
410 delete[] u;
411}
412
413// --------------------------------------------------------------
414std::ostream& operator<<(std::ostream& out, const G4PhysicsVector& pv)
415{
416 // binning
417 G4long prec = out.precision();
418 out << std::setprecision(12) << pv.edgeMin << " " << pv.edgeMax << " "
419 << pv.numberOfNodes << G4endl;
420
421 // contents
422 out << pv.dataVector.size() << G4endl;
423 for (std::size_t i = 0; i < pv.dataVector.size(); ++i)
424 {
425 out << pv.binVector[i] << " " << pv.dataVector[i] << G4endl;
426 }
427 out.precision(prec);
428
429 return out;
430}
431
432//---------------------------------------------------------------
434{
435 if (0 == numberOfNodes)
436 {
437 return 0.0;
438 }
439 if (1 == numberOfNodes || val <= dataVector[0])
440 {
441 return edgeMin;
442 }
443 if (val >= dataVector[numberOfNodes - 1])
444 {
445 return edgeMax;
446 }
447 std::size_t bin = std::lower_bound(dataVector.cbegin(), dataVector.cend(), val)
448 - dataVector.cbegin() - 1;
449 if (bin > idxmax) { bin = idxmax; }
450 G4double res = binVector[bin];
451 G4double del = dataVector[bin + 1] - dataVector[bin];
452 if (del > 0.0)
453 {
454 res += (val - dataVector[bin]) * (binVector[bin + 1] - res) / del;
455 }
456 return res;
457}
458
459//---------------------------------------------------------------
461 G4double val,
462 const G4String& text)
463{
465 ed << "Vector type: " << type << " length= " << numberOfNodes
466 << "; an attempt to put data at index= " << index
467 << " value= " << val << " in " << text;
468 G4Exception("G4PhysicsVector:", "gl0005",
469 FatalException, ed, "Wrong operation");
470}
471
472//---------------------------------------------------------------
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
@ T_G4PhysicsFreeVector
std::ostream & operator<<(std::ostream &out, const G4PhysicsVector &pv)
double G4double
Definition G4Types.hh:83
long G4long
Definition G4Types.hh:87
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
G4PhysicsVectorType type
G4double GetEnergy(const G4double value) const
void PrintPutValueError(std::size_t index, G4double value, const G4String &text)
void ScaleVector(const G4double factorE, const G4double factorV)
G4bool Store(std::ofstream &fOut, G4bool ascii=false) const
std::size_t numberOfNodes
std::vector< G4double > secDerivative
G4PhysicsVector(G4bool spline=false)
G4bool Retrieve(std::ifstream &fIn, G4bool ascii=false)
std::vector< G4double > dataVector
std::vector< G4double > binVector
virtual void Initialise()
void FillSecondDerivatives(const G4SplineType=G4SplineType::Base, const G4double dir1=0.0, const G4double dir2=0.0)
void DumpValues(G4double unitE=1.0, G4double unitV=1.0) const
std::size_t FindBin(const G4double energy, std::size_t idx) const