Geant4
11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DNACPA100LogLogInterpolation.cc
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
// Based on the work of M. Terrissol and M. C. Bordage
27
//
28
// Users are requested to cite the following papers:
29
// - M. Terrissol, A. Baudre, Radiat. Prot. Dosim. 31 (1990) 175-177
30
// - M.C. Bordage, J. Bordes, S. Edel, M. Terrissol, X. Franceries,
31
// M. Bardies, N. Lampe, S. Incerti, Phys. Med. 32 (2016) 1833-1840
32
//
33
// Authors of this class:
34
// M.C. Bordage, M. Terrissol, S. Edel, J. Bordes, S. Incerti
35
//
36
// 15.01.2014: creation
37
//
38
39
#include "
G4DNACPA100LogLogInterpolation.hh
"
40
41
// Constructor
42
43
G4DNACPA100LogLogInterpolation::G4DNACPA100LogLogInterpolation
()
44
=
default
;
45
46
// Destructor
47
48
G4DNACPA100LogLogInterpolation::~G4DNACPA100LogLogInterpolation
()
49
=
default
;
50
51
G4VDataSetAlgorithm
*
G4DNACPA100LogLogInterpolation::Clone
()
const
52
{
return
new
G4DNACPA100LogLogInterpolation
; }
53
54
55
G4double
G4DNACPA100LogLogInterpolation::Calculate
(
G4double
x,
G4int
bin,
56
const
G4DataVector
& points,
57
const
G4DataVector
& data)
const
58
{
59
//G4cout << "G4DNACPA100LogLogInterpolation is performed (2 arguments) " << G4endl;
60
auto
nBins =
G4int
(data.size() - 1);
61
//G4double oldresult = 0.;
62
G4double
value = 0.;
63
if
(x < points[0])
64
{
65
value = 0.;
66
}
67
else
if
(bin < nBins)
68
{
69
G4double
e1 = points[bin];
70
G4double
e2 = points[bin+1];
71
G4double
d1 = data[bin];
72
G4double
d2 = data[bin+1];
73
// Check of e1, e2, d1 and d2 values to avoid floating-point errors when estimating the interpolated value below -- S.I., Jun. 2008
74
if
((d1 > 0.) && (d2 > 0.) && (e1 > 0.) && (e2 > 0.))
75
{
76
// Streamline the Log-Log Interpolation formula in order to reduce the required number of log10() function calls
77
// Variable oldresult contains the result of old implementation of Log-Log interpolation -- M.G.P. Jun. 2001
78
// oldresult = (std::log10(d1)*std::log10(e2/x) + std::log10(d2)*std::log10(x/e1)) / std::log10(e2/e1);
79
// oldresult = std::pow(10.,oldresult);
80
// Variable value contains the result of new implementation, after streamlining the math operation -- N.A.K. Oct. 2008
81
value = std::log10(d1)+(std::log10(d2/d1)/std::log10(e2/e1)*std::log10(x/e1));
82
value = std::pow(10.,value);
83
// Test of the new implementation result (value variable) against the old one (oldresult) -- N.A.K. Dec. 2008
84
// G4double diffResult = value - oldresult;
85
// G4double relativeDiff = 1e-11;
86
// Comparison of the two values based on a max allowable relative difference
87
// if ( std::fabs(diffResult) > relativeDiff*std::fabs(oldresult) )
88
// {
89
// Abort comparison when at least one of two results is infinite
90
// if ((!std::isinf(oldresult)) && (!std::isinf(value)))
91
// {
92
// G4cout << "G4DNACPA100LogLogInterpolation> Old Interpolated Value is:" << oldresult << G4endl;
93
// G4cout << "G4DNACPA100LogLogInterpolation> New Interpolated Value is:" << value << G4endl << G4endl;
94
// G4cerr << "G4DNACPA100LogLogInterpolation> Error in Interpolation:" << G4endl;
95
// G4cerr << "The difference between new and old interpolated value is:" << diffResult << G4endl << G4endl;
96
// }
97
// }
98
}
99
else
value = 0.;
100
}
101
else
102
{
103
value = data[nBins];
104
}
105
return
value;
106
}
107
108
109
// Nicolas A. Karakatsanis: New implementation of log-log interpolation after directly loading
110
// logarithmic values from G4EMLOW dataset
111
112
G4double
G4DNACPA100LogLogInterpolation::Calculate
(
G4double
x,
G4int
bin,
113
const
G4DataVector
& points,
114
const
G4DataVector
& data,
115
const
G4DataVector
& log_points,
116
const
G4DataVector
& log_data)
const
117
{
118
auto
nBins =
G4int
(data.size() - 1);
119
G4double
value = 0.;
120
G4double
log_x = std::log10(x);
121
if
(x < points[0])
122
{
123
value = 0.;
124
}
125
else
if
(bin < nBins)
126
{
127
G4double
log_e1 = log_points[bin];
128
//G4double log_e2 = log_points[bin+1];
129
G4double
log_d1 = log_data[bin];
130
G4double
log_d2 = log_data[bin+1];
131
132
//G4cout << "x = " << x << " , logx = " << log_x << " , bin = " << bin << G4endl;
133
//G4cout << "e1 = " << points[bin] << " d1 = " << data[bin] << G4endl;
134
//G4cout << "e2 = " << points[bin+1] << " d2 = " << data[bin+1] << G4endl;
135
//G4cout << "loge1 = " << log_e1 << " logd1 = " << log_d1 << G4endl;
136
//G4cout << "loge2 = " << log_e2 << " logd2 = " << log_d2 << G4endl;
137
//G4cout << "interpol " << log_d1 + (log_d2 - log_d1)*(log_x - log_e1)/(log_e2 - log_e1) << " " << G4endl;
138
139
140
// Values e1, e2, d1 and d2 are the log values of the corresponding
141
// original energy and data values. Simple linear interpolation performed
142
// on loagarithmic data should be equivalent to log-log interpolation
143
144
// CPA100 specific
145
//value = log_d1 + (log_d2 - log_d1)*(log_x - log_e1)/(log_e2 - log_e1);
146
// value = log_d1;
147
148
value = log_d2;
// UPPER VALUE INTERPOLATION
149
if
(log_x == log_e1) value = log_d1;
// IN CASE OF EQUALITY
150
151
// Delogarithmize to obtain interpolated value
152
value = std::pow(10.,value);
153
}
154
else
155
{
156
value = data[nBins];
157
}
158
159
return
value;
160
}
G4DNACPA100LogLogInterpolation.hh
G4double
double G4double
Definition
G4Types.hh:83
G4int
int G4int
Definition
G4Types.hh:85
G4DNACPA100LogLogInterpolation::G4DNACPA100LogLogInterpolation
G4DNACPA100LogLogInterpolation()
G4DNACPA100LogLogInterpolation::~G4DNACPA100LogLogInterpolation
~G4DNACPA100LogLogInterpolation() override
G4DNACPA100LogLogInterpolation::Calculate
G4double Calculate(G4double point, G4int bin, const G4DataVector &energies, const G4DataVector &data) const override
Definition
G4DNACPA100LogLogInterpolation.cc:55
G4DNACPA100LogLogInterpolation::Clone
G4VDataSetAlgorithm * Clone() const override
Definition
G4DNACPA100LogLogInterpolation.cc:51
G4DataVector
Definition
G4DataVector.hh:47
G4VDataSetAlgorithm
Definition
G4VDataSetAlgorithm.hh:50
geant4-v11.2.2
source
processes
electromagnetic
dna
utils
src
G4DNACPA100LogLogInterpolation.cc
Generated by
1.12.0