Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PEEffectFluoModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4PEEffectFluoModel
33//
34// Author: Vladimir Ivanchenko on base of G4PEEffectModel
35//
36// Creation date: 13.06.2010
37//
38// Modifications:
39//
40// Class Description:
41// Implementation of the photo-electric effect with deexcitation
42//
43// -------------------------------------------------------------------
44//
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
46//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
47
50#include "G4SystemOfUnits.hh"
51#include "G4Electron.hh"
52#include "G4Gamma.hh"
53#include "Randomize.hh"
54#include "G4Material.hh"
55#include "G4DataVector.hh"
58#include "G4LossTableManager.hh"
60
61//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
62
63using namespace std;
64
66 : G4VEmModel(nam)
67{
68 theGamma = G4Gamma::Gamma();
69 theElectron = G4Electron::Electron();
70 fminimalEnergy = 1.0*CLHEP::eV;
72
73 fSandiaCof.resize(4,0.0);
74
75 // default generator
77}
78
79//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
80
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84
86 const G4DataVector&)
87{
88 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
90 if(nullptr == fParticleChange) {
91 fParticleChange = GetParticleChangeForGamma();
92 }
93 std::size_t nmat = G4Material::GetNumberOfMaterials();
94 fMatEnergyTh.resize(nmat, 0.0);
95 for(std::size_t i=0; i<nmat; ++i) {
96 fMatEnergyTh[i] = (*(G4Material::GetMaterialTable()))[i]
97 ->GetSandiaTable()->GetSandiaCofForMaterial(0, 0);
98 //G4cout << "G4PEEffectFluoModel::Initialise Eth(eV)= "
99 // << fMatEnergyTh[i]/eV << G4endl;
100 }
101}
102
103//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
104
107 G4double energy,
110{
111 // This method may be used only if G4MaterialCutsCouple pointer
112 // has been set properly
114 ->GetSandiaTable()->GetSandiaCofPerAtom((G4int)Z, energy, fSandiaCof);
115
116 G4double x1 = 1 / energy;
117
118 return x1 * (fSandiaCof[0] + x1 * (fSandiaCof[1] +
119 x1 * (fSandiaCof[2] + x1 * fSandiaCof[3])));
120}
121
122//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
123
127 G4double energy,
129{
130 // This method may be used only if G4MaterialCutsCouple pointer
131 // has been set properly
132 energy = std::max(energy, fMatEnergyTh[material->GetIndex()]);
133 const G4double* SandiaCof =
134 material->GetSandiaTable()->GetSandiaCofForMaterial(energy);
135
136 G4double x1 = 1 / energy;
137
138 return x1 * (SandiaCof[0] + x1 * (SandiaCof[1] +
139 x1 * (SandiaCof[2] + x1 * SandiaCof[3])));
140}
141
142//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143
144void
145G4PEEffectFluoModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
146 const G4MaterialCutsCouple* couple,
147 const G4DynamicParticle* aDynamicPhoton,
148 G4double,
149 G4double)
150{
151 SetCurrentCouple(couple);
152 const G4Material* aMaterial = couple->GetMaterial();
153
154 G4double energy = aDynamicPhoton->GetKineticEnergy();
155
156 // select randomly one element constituing the material.
157 const G4Element* anElement = SelectRandomAtom(aMaterial,theGamma,energy);
158
159 //
160 // Photo electron
161 //
162
163 // Select atomic shell
164 G4int nShells = anElement->GetNbOfAtomicShells();
165 G4int i = 0;
166 for(; i<nShells; ++i) {
167 /*
168 G4cout << "i= " << i << " E(eV)= " << energy/eV
169 << " Eb(eV)= " << anElement->GetAtomicShell(i)/eV
170 << " " << anElement->GetName()
171 << G4endl;
172 */
173 if(energy >= anElement->GetAtomicShell(i)) { break; }
174 }
175
176 G4double edep = energy;
177
178 // photo-electron is not sampled if shell is not found or
179 // the flag of photoeffect is "false" and shell is no K
180 if ( (fPEBelowKShell || 0 == i) && i < nShells ) {
181
182 G4double bindingEnergy = anElement->GetAtomicShell(i);
183 edep = bindingEnergy;
184 G4double esec = 0.0;
185
186 // sample deexcitation cascade
187 //
188 if(nullptr != fAtomDeexcitation) {
189 G4int index = couple->GetIndex();
190 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
191 G4int Z = G4lrint(anElement->GetZ());
192 auto as = (G4AtomicShellEnumerator)(i);
193 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
194 G4double eshell = shell->BindingEnergy();
195 if(eshell > bindingEnergy && eshell <= energy) {
196 bindingEnergy = eshell;
197 edep = eshell;
198 }
199 std::size_t nbefore = fvect->size();
200 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
201 std::size_t nafter = fvect->size();
202 for (std::size_t j=nbefore; j<nafter; ++j) {
203 G4double e = ((*fvect)[j])->GetKineticEnergy();
204 if(esec + e > edep) {
205 // correct energy in order to have energy balance
206 e = edep - esec;
207 ((*fvect)[j])->SetKineticEnergy(e);
208 esec += e;
209 /*
210 G4cout << "### G4PEffectFluoModel Edep(eV)= " << edep/eV
211 << " Esec(eV)= " << esec/eV
212 << " E["<< j << "](eV)= " << e/eV
213 << " N= " << nafter
214 << " Z= " << Z << " shell= " << i
215 << " Ebind(keV)= " << bindingEnergy/keV
216 << " Eshell(keV)= " << shell->BindingEnergy()/keV
217 << G4endl;
218 */
219 // delete the rest of secondaries (should not happens)
220 for (std::size_t jj=nafter-1; jj>j; --jj) {
221 delete (*fvect)[jj];
222 fvect->pop_back();
223 }
224 break;
225 }
226 esec += e;
227 }
228 edep -= esec;
229 }
230 }
231 // create photo electron
232 //
233 G4double elecKineEnergy = energy - bindingEnergy;
234 if (elecKineEnergy > fminimalEnergy) {
235 auto aParticle = new G4DynamicParticle(theElectron,
236 GetAngularDistribution()->SampleDirection(aDynamicPhoton,
237 elecKineEnergy,
238 i, couple->GetMaterial()),
239 elecKineEnergy);
240 fvect->push_back(aParticle);
241 } else {
242 edep += elecKineEnergy;
243 elecKineEnergy = 0.0;
244 }
245 if(std::abs(energy - elecKineEnergy - esec - edep) > CLHEP::eV) {
246 G4cout << "### G4PEffectFluoModel dE(eV)= "
247 << (energy - elecKineEnergy - esec - edep)/eV
248 << " shell= " << i
249 << " E(keV)= " << energy/keV
250 << " Ebind(keV)= " << bindingEnergy/keV
251 << " Ee(keV)= " << elecKineEnergy/keV
252 << " Esec(keV)= " << esec/keV
253 << " Edep(keV)= " << edep/keV
254 << G4endl;
255 }
256 }
257
258 // kill primary photon
259 fParticleChange->SetProposedKineticEnergy(0.);
260 fParticleChange->ProposeTrackStatus(fStopAndKill);
261 if(edep > 0.0) {
262 fParticleChange->ProposeLocalEnergyDeposit(edep);
263 }
264}
265
266//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
@ fStopAndKill
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
G4double BindingEnergy() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition G4Electron.cc:91
G4double GetZ() const
Definition G4Element.hh:119
G4int GetNbOfAtomicShells() const
Definition G4Element.hh:134
G4double GetAtomicShell(G4int index) const
Definition G4Element.cc:361
static G4EmParameters * Instance()
G4bool PhotoeffectBelowKShell() const
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
const G4Material * GetMaterial() const
G4SandiaTable * GetSandiaTable() const
static std::size_t GetNumberOfMaterials()
std::size_t GetIndex() const
static G4MaterialTable * GetMaterialTable()
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
~G4PEEffectFluoModel() override
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
G4PEEffectFluoModel(const G4String &nam="PhotoElectric")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double, G4double) override
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4double GetSandiaCofForMaterial(G4int, G4int) const
void GetSandiaCofPerAtom(G4int Z, G4double energy, std::vector< G4double > &coeff) const
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
G4VEmAngularDistribution * GetAngularDistribution()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
void SetCurrentCouple(const G4MaterialCutsCouple *)
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
void SetDeexcitationFlag(G4bool val)
void SetAngularDistribution(G4VEmAngularDistribution *)
const G4MaterialCutsCouple * CurrentCouple() const
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
int G4lrint(double ad)
Definition templates.hh:134