Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Integrator.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4Integrator
27//
28// Class description:
29//
30// Template class collecting integrator methods for generic funtions.
31
32// Author: V.Grichine, 04.09.1999 - First implementation based on
33// G4SimpleIntegration class with H.P.Wellisch, G.Cosmo, and
34// E.TCherniaev advises
35// --------------------------------------------------------------------
36#ifndef G4INTEGRATOR_HH
37#define G4INTEGRATOR_HH 1
38
39#include "G4Types.hh"
41#include <cmath>
42
43template <class T, class F>
45{
46 public:
49
50 G4double Simpson(T& typeT, F f, G4double a, G4double b, G4int n);
51 G4double Simpson(T* ptrT, F f, G4double a, G4double b, G4int n);
53 // Simpson integration method
54
58 G4double e);
59 // Adaptive Gauss method
60
61 // Integration methods involving orthogohol polynomials
62
63 G4double Legendre(T& typeT, F f, G4double a, G4double b, G4int n);
64 G4double Legendre(T* ptrT, F f, G4double a, G4double b, G4int n);
66 //
67 // Methods involving Legendre polynomials
68
69 G4double Legendre10(T& typeT, F f, G4double a, G4double b);
70 G4double Legendre10(T* ptrT, F f, G4double a, G4double b);
72 //
73 // Legendre10 is very fast and accurate enough
74
75 G4double Legendre96(T& typeT, F f, G4double a, G4double b);
76 G4double Legendre96(T* ptrT, F f, G4double a, G4double b);
78 //
79 // Legendre96 is very accurate and fast enough
80
81 G4double Chebyshev(T& typeT, F f, G4double a, G4double b, G4int n);
82 G4double Chebyshev(T* ptrT, F f, G4double a, G4double b, G4int n);
84 //
85 // Methods involving Chebyshev polynomials
86
87 G4double Laguerre(T& typeT, F f, G4double alpha, G4int n);
88 G4double Laguerre(T* ptrT, F f, G4double alpha, G4int n);
90 //
91 // Method involving Laguerre polynomials
92
93 G4double Hermite(T& typeT, F f, G4int n);
94 G4double Hermite(T* ptrT, F f, G4int n);
96 //
97 // Method involving Hermite polynomials
98
99 G4double Jacobi(T& typeT, F f, G4double alpha, G4double beta, G4int n);
100 G4double Jacobi(T* ptrT, F f, G4double alpha, G4double beta, G4int n);
102 G4int n);
103 // Method involving Jacobi polynomials
104
105 protected:
106 // Auxiliary functions for adaptive Gauss method
107
108 G4double Gauss(T& typeT, F f, G4double a, G4double b);
109 G4double Gauss(T* ptrT, F f, G4double a, G4double b);
111
112 void AdaptGauss(T& typeT, F f, G4double a, G4double b, G4double e,
113 G4double& sum, G4int& n);
114 void AdaptGauss(T* typeT, F f, G4double a, G4double b, G4double e,
115 G4double& sum, G4int& n);
117 G4double& sum, G4int& n);
118
120};
121
122#include "G4Integrator.icc"
123
124#endif
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4double Gauss(T &typeT, F f, G4double a, G4double b)
G4double Jacobi(G4double(*f)(G4double), G4double alpha, G4double beta, G4int n)
G4double Simpson(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
G4double AdaptiveGauss(T *ptrT, F f, G4double a, G4double b, G4double e)
void AdaptGauss(T &typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Chebyshev(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Hermite(T *ptrT, F f, G4int n)
G4double Laguerre(G4double(*f)(G4double), G4double alpha, G4int n)
G4double Jacobi(T *ptrT, F f, G4double alpha, G4double beta, G4int n)
G4double Jacobi(T &typeT, F f, G4double alpha, G4double beta, G4int n)
G4double Simpson(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Laguerre(T &typeT, F f, G4double alpha, G4int n)
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
void AdaptGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre96(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre96(T *ptrT, F f, G4double a, G4double b)
G4double Chebyshev(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Gauss(T *ptrT, F f, G4double a, G4double b)
G4double Hermite(G4double(*f)(G4double), G4int n)
G4double Gauss(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre10(T *ptrT, F f, G4double a, G4double b)
G4double Simpson(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
G4double GammaLogarithm(G4double xx)
G4double Chebyshev(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double AdaptiveGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e)
G4double Legendre10(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Hermite(T &typeT, F f, G4int n)
G4double Laguerre(T *ptrT, F f, G4double alpha, G4int n)
void AdaptGauss(T *typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)