Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsKaonMinusInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28//
29//
30// G4 Physics class: G4ChipsKaonMinusInelasticXS for gamma+A cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33// --------------------------------------------------------------------------------
34// Short description: Cross-sections extracted from the CHIPS package for
35// kaon(minus)-nuclear interactions. Author: M. Kossov
36// -------------------------------------------------------------------------------------
37//
38
40#include "G4SystemOfUnits.hh"
41#include "G4DynamicParticle.hh"
43#include "G4KaonMinus.hh"
44
45// factory
47//
49
50namespace {
51 const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
52 const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
53 const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
54 const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
55 const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
56 const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
57 const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
58 const G4int nH=224; // A#of HEN points in lnE
59 const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
60 const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
61 const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
62 const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
63}
64// Initialization of the
65
67{
68 lastLEN=0; // Pointer to lastArray of LowEn CS
69 lastHEN=0; // Pointer to lastArray of HighEn CS
70 lastN=0; // The last N of calculated nucleus
71 lastZ=0; // The last Z of calculated nucleus
72 lastP=0.; // Last used in CrossSection Momentum
73 lastTH=0.; // Last threshold momentum
74 lastCS=0.; // Last value of the Cross Section
75 lastI=0; // The last position in the DAMDB
76 LEN = new std::vector<G4double*>;
77 HEN = new std::vector<G4double*>;
78}
79
81{
82 std::size_t lens=LEN->size();
83 for(std::size_t i=0; i<lens; ++i) delete[] (*LEN)[i];
84 delete LEN;
85
86 std::size_t hens=HEN->size();
87 for(std::size_t i=0; i<hens; ++i) delete[] (*HEN)[i];
88 delete HEN;
89}
90
91void
93{
94 outFile << "G4ChipsKaonMinusInelasticXS provides the inelastic cross\n"
95 << "section for K- nucleus scattering as a function of incident\n"
96 << "momentum. The cross section is calculated using M. Kossov's\n"
97 << "CHIPS parameterization of cross section data.\n";
98}
99
101 const G4Element*,
102 const G4Material*)
103{
104 return true;
105}
106
107
108// The main member function giving the collision cross section (P is in IU, CS is in mb)
109// Make pMom in independent units ! (Now it is MeV)
111 const G4Isotope*,
112 const G4Element*,
113 const G4Material*)
114{
115 G4double pMom=Pt->GetTotalMomentum();
116 G4int tgN = A - tgZ;
117
118 return GetChipsCrossSection(pMom, tgZ, tgN, -321);
119}
120
122{
123 G4bool in=false; // By default the isotope must be found in the AMDB
124 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
125 {
126 in = false; // By default the isotope haven't be found in AMDB
127 lastP = 0.; // New momentum history (nothing to compare with)
128 lastN = tgN; // The last N of the calculated nucleus
129 lastZ = tgZ; // The last Z of the calculated nucleus
130 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
131 j = 0; // A#0f records found in DB for this projectile
132 if(lastI) for(G4int i=0; i<lastI; ++i) // AMDB exists, try to find the (Z,N) isotope
133 {
134 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
135 {
136 lastI=i; // Remember the index for future fast/last use
137 lastTH =colTH[i]; // The last THreshold (A-dependent)
138 if(pMom<=lastTH)
139 {
140 return 0.; // Energy is below the Threshold value
141 }
142 lastP =colP [i]; // Last Momentum (A-dependent)
143 lastCS =colCS[i]; // Last CrossSect (A-dependent)
144 in = true; // This is the case when the isotop is found in DB
145 // Momentum pMom is in IU ! @@ Units
146 lastCS=CalculateCrossSection(-1,j,-321,lastZ,lastN,pMom); // read & update
147 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
148 {
149 lastCS=0.;
150 lastTH=pMom;
151 }
152 break; // Go out of the LOOP
153 }
154 j++; // Increment a#0f records found in DB
155 }
156 if(!in) // This isotope has not been calculated previously
157 {
158 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
159 lastCS=CalculateCrossSection(0,j,-321,lastZ,lastN,pMom); //calculate & create
160 //if(lastCS>0.) // It means that the AMBD was initialized
161 //{
162
163 // lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
164
165 lastTH = 0; // WP - to be checked!!!
166 colN.push_back(tgN);
167 colZ.push_back(tgZ);
168 colP.push_back(pMom);
169 colTH.push_back(lastTH);
170 colCS.push_back(lastCS);
171 //} // M.K. Presence of H1 with high threshold breaks the syncronization
172 return lastCS*millibarn;
173 } // End of creation of the new set of parameters
174 else
175 {
176 colP[lastI]=pMom;
177 colCS[lastI]=lastCS;
178 }
179 } // End of parameters udate
180 else if(pMom<=lastTH)
181 {
182 return 0.; // Momentum is below the Threshold Value -> CS=0
183 }
184 else // It is the last used -> use the current tables
185 {
186 lastCS=CalculateCrossSection(1,j,-321,lastZ,lastN,pMom); // Only read and UpdateDB
187 lastP=pMom;
188 }
189 return lastCS*millibarn;
190}
191
192// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
193G4double G4ChipsKaonMinusInelasticXS::CalculateCrossSection(G4int F, G4int I,
194 G4int, G4int targZ, G4int targN, G4double Momentum)
195{
196 G4double sigma=0.;
197 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
198 //G4double A=targN+targZ; // A of the target
199 if(F<=0) // This isotope was not the last used isotop
200 {
201 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
202 {
203 G4int sync=(G4int)LEN->size();
204 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
205 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
206 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
207 }
208 else // This isotope wasn't calculated before => CREATE
209 {
210 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
211 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
212 // --- Instead of making a separate function ---
213 G4double P=THmiG; // Table threshold in GeV/c
214 for(G4int k=0; k<nL; k++)
215 {
216 lastLEN[k] = CrossSectionLin(targZ, targN, P);
217 P+=dPG;
218 }
219 G4double lP=milPG;
220 for(G4int n=0; n<nH; n++)
221 {
222 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
223 lP+=dlP;
224 }
225 // --- End of possible separate function
226 // *** The synchronization check ***
227 G4int sync=(G4int)LEN->size();
228 if(sync!=I)
229 {
230 G4cerr<<"***G4ChipsKaonMinusCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
231 <<", N="<<targN<<", F="<<F<<G4endl;
232 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
233 }
234 LEN->push_back(lastLEN); // remember the Low Energy Table
235 HEN->push_back(lastHEN); // remember the High Energy Table
236 } // End of creation of the new set of parameters
237 } // End of parameters udate
238 // =------------------= NOW the Magic Formula =--------------------------=
239 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
240 else if (Momentum<Pmin) // High Energy region
241 {
242 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
243 }
244 else if (Momentum<Pmax) // High Energy region
245 {
246 G4double lP=std::log(Momentum);
247 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
248 }
249 else // UHE region (calculation, not frequent)
250 {
251 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
252 sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
253 }
254 if(sigma<0.) return 0.;
255 return sigma;
256}
257
258// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
259G4double G4ChipsKaonMinusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
260{
261 G4double lP=std::log(P);
262 return CrossSectionFormula(tZ, tN, P, lP);
263}
264
265// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
266G4double G4ChipsKaonMinusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
267{
268 G4double P=std::exp(lP);
269 return CrossSectionFormula(tZ, tN, P, lP);
270}
271// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
272G4double G4ChipsKaonMinusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
273 G4double P, G4double lP)
274{
275 G4double sigma=0.;
276 if(tZ==1 && !tN) // PiMin-Proton interaction from G4QuasiElRatios
277 {
278 G4double ld=lP-3.5;
279 G4double ld2=ld*ld;
280 G4double p2=P*P;
281 G4double p4=p2*p2;
282 G4double sp=std::sqrt(P);
283 G4double psp=P*sp;
284 G4double lm=P-.39;
285 G4double md=lm*lm+.000156;
286 G4double lh=P-1.;
287 G4double hd=lh*lh+.0156;
288 G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.075/p4);
289 G4double To=(.3*ld2+19.5)/(1.-.21/sp+.52/p4);
290 sigma=8.8/psp+(To-El)+.002/md+.15/hd;
291 }
292 else if(tZ==1 && tN==1) // kmp_tot
293 {
294 G4double p2=P*P;
295 G4double dX=lP-3.7;
296 G4double dR=P-.94;
297 G4double sp=std::sqrt(P);
298 sigma=(.6*dX*dX+36.)/(1.-.11/sp+.52/p2/p2)+.7/(dR*dR+.0256)+18./P/sp;
299 }
300 else if(tZ<97 && tN<152) // General solution
301 {
302 G4double d=lP-4.2;
303 G4double sp=std::sqrt(P);
304 G4double p2=P*P;
305 G4double a=tN+tZ; // A of the target
306 G4double sa=std::sqrt(a);
307 G4double al=std::log(a);
308 G4double a2=a*a;
309 G4double c=52.*std::exp(al*0.6)*(1.+97./a2)/(1.+9.8/a)/(1.+47./a2);
310 G4double gg=-.2-.003*a;
311 G4double h=.5+.07*a;
312 G4double v=P-1.;
313 G4double f=.6*a*sa/(1.+.00002*a2);
314 G4double u=.125+.127*al;
315 sigma=(c+d*d)/(1.+gg/sp+h/p2/p2)+f/(v*v+u*u)+20.*sa/P/sp;
316 }
317 else
318 {
319 G4cerr<<"-Warning-G4ChipsKMinusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
320 sigma=0.;
321 }
322 if(sigma<0.) return 0.;
323 return sigma;
324}
325
326G4double G4ChipsKaonMinusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
327{
328 if(DX<=0. || N<2)
329 {
330 G4cerr<<"***G4ChipsKaonMinusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
331 return Y[0];
332 }
333
334 G4int N2=N-2;
335 G4double d=(X-X0)/DX;
336 G4int jj=static_cast<int>(d);
337 if (jj<0) jj=0;
338 else if(jj>N2) jj=N2;
339 d-=jj; // excess
340 G4double yi=Y[jj];
341 G4double sigma=yi+(Y[jj+1]-yi)*d;
342
343 return sigma;
344}
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double Y(G4double density)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition G4ios.hh:67
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual void CrossSectionDescription(std::ostream &) const
G4double GetTotalMomentum() const
#define N
Definition crc32.c:57