Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LENDFission.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26#include "G4LENDFission.hh"
27#include "G4SystemOfUnits.hh"
28#include "G4Nucleus.hh"
29#include "G4IonTable.hh"
30
32{
33
34 G4double temp = aTrack.GetMaterial()->GetTemperature();
35
36 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
37 G4int iZ = aTarg.GetZ_asInt();
38 G4int iA = aTarg.GetA_asInt();
39 //G4int iM = aTarg.GetM_asInt();
40 G4int iM = 0;
41 if ( aTarg.GetIsotope() != NULL ) {
42 iM = aTarg.GetIsotope()->Getm();
43 }
44
45 G4double ke = aTrack.GetKineticEnergy();
46
48 theResult->Clear();
49
51 if ( aTarget == NULL ) return returnUnchanged( aTrack , theResult );
52 std::vector<G4GIDI_Product>* products = aTarget->getFissionFinalState( ke*MeV, temp, MyRNG, NULL );
53 if ( products != NULL )
54 {
55 for ( G4int j = 0; j < int( products->size() ); j++ )
56 {
57 G4int jZ = (*products)[j].Z;
58 G4int jA = (*products)[j].A;
59 G4int jM = (*products)[j].m;
60
61 //G4cout << "Z = " << (*products)[j].Z
62 // << ", A = " << (*products)[j].A
63 // << ", EK = " << (*products)[j].kineticEnergy << " [MeV]"
64 // << ", px = " << (*products)[j].px
65 // << ", py = " << (*products)[j].py
66 // << ", pz = " << (*products)[j].pz
67 // << ", birthTimeSec = " << (*products)[j].birthTimeSec << " [second]"
68 // << G4endl;
69
71
72 if ( jZ > 0 )
73 {
74 theSec->SetDefinition( G4IonTable::GetIonTable()->GetIon( jZ, jA , jM ) );
75 }
76 else if ( jA == 1 && jZ == 0 )
77 {
79 }
80 else
81 {
82 theSec->SetDefinition( G4Gamma::Gamma() );
83 }
84
85 theSec->SetMomentum( G4ThreeVector( (*products)[j].px*MeV , (*products)[j].py*MeV , (*products)[j].pz*MeV ) );
86 //G4cout << theSec->GetDefinition()->GetParticleName() << G4endl;
87 theResult->AddSecondary( theSec, secID );
88 //Set time for delayed neutrons
89 //Current implementation is a little tricky,
90 if ( (*products)[j].birthTimeSec != 0 ) {
91 G4double time = (*products)[j].birthTimeSec*second + aTrack.GetGlobalTime();
92 theResult->GetSecondary(theResult->GetNumberOfSecondaries()-1)->SetTime(time);
93 }
94 }
95 }
96 delete products;
97
98 theResult->SetStatusChange( stopAndKill );
99
100 return theResult;
101
102}
103const std::pair<G4double, G4double> G4LENDFission::GetFatalEnergyCheckLevels() const
104{
105 // max energy non-conservation is mass of heavy nucleus
106 //return std::pair<G4double, G4double>(5*perCent,250*GeV);
107 return std::pair<G4double, G4double>(5*perCent,DBL_MAX);
108}
@ stopAndKill
double MyRNG(void *)
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
std::vector< G4GIDI_Product > * getFissionFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
const G4Material * GetMaterial() const
G4double GetKineticEnergy() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
static G4IonTable * GetIonTable()
G4int Getm() const
Definition G4Isotope.hh:89
virtual const std::pair< G4double, G4double > GetFatalEnergyCheckLevels() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
G4int GetNucleusEncoding(G4int iZ, G4int iA, G4int iM)
G4LENDManager * lend_manager
G4HadFinalState * returnUnchanged(const G4HadProjectile &aTrack, G4HadFinalState *theResult)
G4GIDI_target * get_target_from_map(G4int nuclear_code)
G4double GetTemperature() const
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
const G4Isotope * GetIsotope()
Definition G4Nucleus.hh:111
#define DBL_MAX
Definition templates.hh:62