Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PixeCrossSectionHandler.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Author: Maria Grazia Pia ([email protected])
29//
30// History:
31// -----------
32// 16 Jun 2008 MGP Created; Cross section manager for hadron impact ionization
33// Documented in:
34// M.G. Pia et al., PIXE Simulation With Geant4,
35// IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3614-3649, Dec. 2009
36//
37// -------------------------------------------------------------------
38
41#include "G4IInterpolator.hh"
43#include "G4IDataSet.hh"
44#include "G4DataSet.hh"
45#include "G4CompositeDataSet.hh"
46#include "G4PixeShellDataSet.hh"
48#include "G4Material.hh"
49#include "G4Element.hh"
50#include "Randomize.hh"
51#include "G4SystemOfUnits.hh"
53
54#include <map>
55#include <vector>
56#include <fstream>
57#include <sstream>
58#include <memory>
59
60
62{
63 crossSections = 0;
64 interpolation = 0;
65 // Initialise with default values
66 Initialise(0,"","","",1.*keV,0.1*GeV,200,MeV,barn,6,92);
67 ActiveElements();
68}
69
70
72 const G4String& modelK,
73 const G4String& modelL,
74 const G4String& modelM,
75 G4double minE,
76 G4double maxE,
77 G4int bins,
78 G4double unitE,
79 G4double unitData,
80 G4int minZ,
81 G4int maxZ)
82 : interpolation(algorithm), eMin(minE), eMax(maxE), nBins(bins),
83 unit1(unitE), unit2(unitData), zMin(minZ), zMax(maxZ)
84{
85 crossSections = 0;
86
87 crossModel.push_back(modelK);
88 crossModel.push_back(modelL);
89 crossModel.push_back(modelM);
90
91 //std::cout << "PixeCrossSectionHandler constructor - crossModel[0] = "
92 // << crossModel[0]
93 // << std::endl;
94
95 ActiveElements();
96}
97
99{
100 delete interpolation;
101 interpolation = 0;
102 std::map<G4int,G4IDataSet*,std::less<G4int> >::iterator pos;
103
104 for (pos = dataMap.begin(); pos != dataMap.end(); ++pos)
105 {
106 // The following is a workaround for STL ObjectSpace implementation,
107 // which does not support the standard and does not accept
108 // the syntax pos->second
109 // G4IDataSet* dataSet = pos->second;
110 G4IDataSet* dataSet = (*pos).second;
111 delete dataSet;
112 }
113
114 if (crossSections != 0)
115 {
116 std::size_t n = crossSections->size();
117 for (std::size_t i=0; i<n; ++i)
118 {
119 delete (*crossSections)[i];
120 }
121 delete crossSections;
122 crossSections = 0;
123 }
124}
125
127 const G4String& modelK,
128 const G4String& modelL,
129 const G4String& modelM,
130 G4double minE, G4double maxE,
131 G4int numberOfBins,
132 G4double unitE, G4double unitData,
133 G4int minZ, G4int maxZ)
134{
135 if (algorithm != 0)
136 {
137 delete interpolation;
138 interpolation = algorithm;
139 }
140 else
141 {
142 interpolation = CreateInterpolation();
143 }
144
145 eMin = minE;
146 eMax = maxE;
147 nBins = numberOfBins;
148 unit1 = unitE;
149 unit2 = unitData;
150 zMin = minZ;
151 zMax = maxZ;
152
153 crossModel.push_back(modelK);
154 crossModel.push_back(modelL);
155 crossModel.push_back(modelM);
156
157}
158
160{
161 std::map<G4int,G4IDataSet*,std::less<G4int> >::const_iterator pos;
162
163 for (pos = dataMap.begin(); pos != dataMap.end(); pos++)
164 {
165 // The following is a workaround for STL ObjectSpace implementation,
166 // which does not support the standard and does not accept
167 // the syntax pos->first or pos->second
168 // G4int z = pos->first;
169 // G4IDataSet* dataSet = pos->second;
170 G4int z = (*pos).first;
171 G4IDataSet* dataSet = (*pos).second;
172 G4cout << "---- Data set for Z = "
173 << z
174 << G4endl;
175 dataSet->PrintData();
176 G4cout << "--------------------------------------------------" << G4endl;
177 }
178}
179
181{
182 std::size_t nZ = activeZ.size();
183 for (std::size_t i=0; i<nZ; ++i)
184 {
185 G4int Z = (G4int) activeZ[i];
186 G4IInterpolator* algo = interpolation->Clone();
187 G4IDataSet* dataSet = new G4PixeShellDataSet(Z, algo,crossModel[0],crossModel[1],crossModel[2]);
188
189 // Degug printing
190 //std::cout << "PixeCrossSectionHandler::Load - "
191 // << Z
192 // << ", modelK = "
193 // << crossModel[0]
194 // << " fileName = "
195 // << fileName
196 // << std::endl;
197
198 dataSet->LoadData(fileName);
199 dataMap[Z] = dataSet;
200 }
201
202 // Build cross sections for materials if not already built
203 if (! crossSections)
204 {
205 BuildForMaterials();
206 }
207
208}
209
211{
212 // Reset the map of data sets: remove the data sets from the map
213 std::map<G4int,G4IDataSet*,std::less<G4int> >::iterator pos;
214
215 if(! dataMap.empty())
216 {
217 for (pos = dataMap.begin(); pos != dataMap.end(); ++pos)
218 {
219 // The following is a workaround for STL ObjectSpace implementation,
220 // which does not support the standard and does not accept
221 // the syntax pos->first or pos->second
222 // G4IDataSet* dataSet = pos->second;
223 G4IDataSet* dataSet = (*pos).second;
224 delete dataSet;
225 dataSet = 0;
226 G4int i = (*pos).first;
227 dataMap[i] = 0;
228 }
229 dataMap.clear();
230 }
231
232 activeZ.clear();
233 ActiveElements();
234}
235
237{
238 G4double value = 0.;
239
240 std::map<G4int,G4IDataSet*,std::less<G4int> >::const_iterator pos;
241 pos = dataMap.find(Z);
242 if (pos!= dataMap.end())
243 {
244 // The following is a workaround for STL ObjectSpace implementation,
245 // which does not support the standard and does not accept
246 // the syntax pos->first or pos->second
247 // G4IDataSet* dataSet = pos->second;
248 G4IDataSet* dataSet = (*pos).second;
249 value = dataSet->FindValue(energy);
250 }
251 else
252 {
253 G4cout << "WARNING: G4PixeCrossSectionHandler::FindValue(Z,e) did not find Z = "
254 << Z << G4endl;
255 }
256 return value;
257}
258
260 G4int shellIndex) const
261{
262 G4double value = 0.;
263
264 std::map<G4int,G4IDataSet*,std::less<G4int> >::const_iterator pos;
265 pos = dataMap.find(Z);
266 if (pos!= dataMap.end())
267 {
268 // The following is a workaround for STL ObjectSpace implementation,
269 // which does not support the standard and does not accept
270 // the syntax pos->first or pos->second
271 // G4IDataSet* dataSet = pos->second;
272 G4IDataSet* dataSet = (*pos).second;
273 if (shellIndex >= 0)
274 {
275 G4int nComponents = (G4int)dataSet->NumberOfComponents();
276 if(shellIndex < nComponents)
277 // The value is the cross section for shell component at given energy
278 value = dataSet->GetComponent(shellIndex)->FindValue(energy);
279 else
280 {
281 G4cout << "WARNING: G4PixeCrossSectionHandler::FindValue(Z,e,shell) did not find"
282 << " shellIndex= " << shellIndex
283 << " for Z= "
284 << Z << G4endl;
285 }
286 } else {
287 value = dataSet->FindValue(energy);
288 }
289 }
290 else
291 {
292 G4cout << "WARNING: G4PixeCrossSectionHandler::FindValue did not find Z = "
293 << Z << G4endl;
294 }
295 return value;
296}
297
298
300 G4double energy) const
301{
302 G4double value = 0.;
303
304 const G4ElementVector* elementVector = material->GetElementVector();
305 const G4double* nAtomsPerVolume = material->GetVecNbOfAtomsPerVolume();
306 std::size_t nElements = material->GetNumberOfElements();
307
308 for (std::size_t i=0 ; i<nElements ; ++i)
309 {
310 G4int Z = (G4int) (*elementVector)[i]->GetZ();
311 G4double elementValue = FindValue(Z,energy);
312 G4double nAtomsVol = nAtomsPerVolume[i];
313 value += nAtomsVol * elementValue;
314 }
315
316 return value;
317}
318
319/*
320 G4IDataSet* G4PixeCrossSectionHandler::BuildMeanFreePathForMaterials(const G4DataVector* energyCuts )
321 {
322 // Builds a CompositeDataSet containing the mean free path for each material
323 // in the material table
324
325 G4DataVector energyVector;
326 G4double dBin = std::log10(eMax/eMin) / nBins;
327
328 for (G4int i=0; i<nBins+1; i++)
329 {
330 energyVector.push_back(std::pow(10., std::log10(eMin)+i*dBin));
331 }
332
333 // Factory method to build cross sections in derived classes,
334 // related to the type of physics process
335
336 if (crossSections != 0)
337 { // Reset the list of cross sections
338 std::vector<G4IDataSet*>::iterator mat;
339 if (! crossSections->empty())
340 {
341 for (mat = crossSections->begin(); mat!= crossSections->end(); ++mat)
342 {
343 G4IDataSet* set = *mat;
344 delete set;
345 set = 0;
346 }
347 crossSections->clear();
348 delete crossSections;
349 crossSections = 0;
350 }
351 }
352
353 crossSections = BuildCrossSectionsForMaterials(energyVector);
354
355 if (crossSections == 0)
356 G4Exception("G4PixeCrossSectionHandler::BuildMeanFreePathForMaterials",
357 "pii00000201",
358 FatalException,
359 "crossSections = 0");
360
361 G4IInterpolator* algo = CreateInterpolation();
362 G4IDataSet* materialSet = new G4CompositeDataSet(algo);
363
364 G4DataVector* energies;
365 G4DataVector* data;
366
367 const G4ProductionCutsTable* theCoupleTable=
368 G4ProductionCutsTable::GetProductionCutsTable();
369 std::size_t numOfCouples = theCoupleTable->GetTableSize();
370
371
372 for (std::size_t m=0; m<numOfCouples; m++)
373 {
374 energies = new G4DataVector;
375 data = new G4DataVector;
376 for (G4int bin=0; bin<nBins; bin++)
377 {
378 G4double energy = energyVector[bin];
379 energies->push_back(energy);
380 G4IDataSet* matCrossSet = (*crossSections)[m];
381 G4double materialCrossSection = 0.0;
382 G4int nElm = matCrossSet->NumberOfComponents();
383 for(G4int j=0; j<nElm; j++) {
384 materialCrossSection += matCrossSet->GetComponent(j)->FindValue(energy);
385 }
386
387 if (materialCrossSection > 0.)
388 {
389 data->push_back(1./materialCrossSection);
390 }
391 else
392 {
393 data->push_back(DBL_MAX);
394 }
395 }
396 G4IInterpolator* algo = CreateInterpolation();
397 G4IDataSet* dataSet = new G4DataSet(m,energies,data,algo,1.,1.);
398 materialSet->AddComponent(dataSet);
399 }
400
401 return materialSet;
402 }
403
404*/
405
406void G4PixeCrossSectionHandler::BuildForMaterials()
407{
408 // Builds a CompositeDataSet containing the mean free path for each material
409 // in the material table
410
411 G4DataVector energyVector;
412 G4double dBin = std::log10(eMax/eMin) / nBins;
413
414 for (G4int i=0; i<nBins+1; i++)
415 {
416 energyVector.push_back(std::pow(10., std::log10(eMin)+i*dBin));
417 }
418
419 if (crossSections != 0)
420 { // Reset the list of cross sections
421 std::vector<G4IDataSet*>::iterator mat;
422 if (! crossSections->empty())
423 {
424 for (mat = crossSections->begin(); mat!= crossSections->end(); ++mat)
425 {
426 G4IDataSet* set = *mat;
427 delete set;
428 set = 0;
429 }
430 crossSections->clear();
431 delete crossSections;
432 crossSections = 0;
433 }
434 }
435
436 crossSections = BuildCrossSectionsForMaterials(energyVector);
437
438 if (crossSections == 0)
439 G4Exception("G4PixeCrossSectionHandler::BuildForMaterials",
440 "pii00000210",
442 ", crossSections = 0");
443
444 return;
445}
446
447
449 G4double e) const
450{
451 // Select randomly an element within the material, according to the weight
452 // determined by the cross sections in the data set
453
454 G4int nElements = (G4int)material->GetNumberOfElements();
455
456 // Special case: the material consists of one element
457 if (nElements == 1)
458 {
459 G4int Z = (G4int) material->GetZ();
460 return Z;
461 }
462
463 // Composite material
464
465 const G4ElementVector* elementVector = material->GetElementVector();
466 std::size_t materialIndex = material->GetIndex();
467
468 G4IDataSet* materialSet = (*crossSections)[materialIndex];
469 G4double materialCrossSection0 = 0.0;
470 G4DataVector cross;
471 cross.clear();
472 for ( G4int i=0; i < nElements; ++i )
473 {
474 G4double cr = materialSet->GetComponent(i)->FindValue(e);
475 materialCrossSection0 += cr;
476 cross.push_back(materialCrossSection0);
477 }
478
479 G4double random = G4UniformRand() * materialCrossSection0;
480
481 for (G4int k=0 ; k < nElements ; ++k )
482 {
483 if (random <= cross[k]) return (G4int) (*elementVector)[k]->GetZ();
484 }
485 // It should never get here
486 return 0;
487}
488
489/*
490 const G4Element* G4PixeCrossSectionHandler::SelectRandomElement(const G4MaterialCutsCouple* couple,
491 G4double e) const
492 {
493 // Select randomly an element within the material, according to the weight determined
494 // by the cross sections in the data set
495
496 const G4Material* material = couple->GetMaterial();
497 G4Element* nullElement = 0;
498 G4int nElements = material->GetNumberOfElements();
499 const G4ElementVector* elementVector = material->GetElementVector();
500
501 // Special case: the material consists of one element
502 if (nElements == 1)
503 {
504 G4Element* element = (*elementVector)[0];
505 return element;
506 }
507 else
508 {
509 // Composite material
510
511 std::size_t materialIndex = couple->GetIndex();
512
513 G4IDataSet* materialSet = (*crossSections)[materialIndex];
514 G4double materialCrossSection0 = 0.0;
515 G4DataVector cross;
516 cross.clear();
517 for (G4int i=0; i<nElements; i++)
518 {
519 G4double cr = materialSet->GetComponent(i)->FindValue(e);
520 materialCrossSection0 += cr;
521 cross.push_back(materialCrossSection0);
522 }
523
524 G4double random = G4UniformRand() * materialCrossSection0;
525
526 for (G4int k=0 ; k < nElements ; k++ )
527 {
528 if (random <= cross[k]) return (*elementVector)[k];
529 }
530 // It should never end up here
531 G4cout << "G4PixeCrossSectionHandler::SelectRandomElement - no element found" << G4endl;
532 return nullElement;
533 }
534 }
535*/
536
537
539{
540 // Select randomly a shell, according to the weight determined by the cross sections
541 // in the data set
542
543 // Note for later improvement: it would be useful to add a cache mechanism for already
544 // used shells to improve performance
545
546 G4int shell = 0;
547
548 G4double totCrossSection = FindValue(Z,e);
549 G4double random = G4UniformRand() * totCrossSection;
550 G4double partialSum = 0.;
551
552 G4IDataSet* dataSet = nullptr;
553 auto pos = dataMap.find(Z);
554 // The following is a workaround for STL ObjectSpace implementation,
555 // which does not support the standard and does not accept
556 // the syntax pos->first or pos->second
557 // if (pos != dataMap.end()) dataSet = pos->second;
558 if (pos != dataMap.end()) dataSet = (*pos).second;
559
560 if (dataSet != nullptr) {
561 G4int nShells = (G4int)dataSet->NumberOfComponents();
562 for (G4int i=0; i<nShells; ++i)
563 {
564 const G4IDataSet* shellDataSet = dataSet->GetComponent(i);
565 if (shellDataSet != 0)
566 {
567 G4double value = shellDataSet->FindValue(e);
568 partialSum += value;
569 if (random <= partialSum) return i;
570 }
571 }
572 }
573 // It should never get here
574 return shell;
575}
576
577void G4PixeCrossSectionHandler::ActiveElements()
578{
579 const G4MaterialTable* materialTable = G4Material::GetMaterialTable();
580 if (materialTable == 0)
581 G4Exception("G4PixeCrossSectionHandler::ActiveElements",
582 "pii00000220",
584 "no MaterialTable found");
585
586 std::size_t nMaterials = G4Material::GetNumberOfMaterials();
587
588 for (std::size_t mat=0; mat<nMaterials; ++mat)
589 {
590 const G4Material* material= (*materialTable)[mat];
591 const G4ElementVector* elementVector = material->GetElementVector();
592 const std::size_t nElements = material->GetNumberOfElements();
593
594 for (std::size_t iEl=0; iEl<nElements; ++iEl)
595 {
596 G4double Z = (*elementVector)[iEl]->GetZ();
597 if (!(activeZ.contains(Z)) && Z >= zMin && Z <= zMax)
598 {
599 activeZ.push_back(Z);
600 }
601 }
602 }
603}
604
605G4IInterpolator* G4PixeCrossSectionHandler::CreateInterpolation()
606{
607 G4IInterpolator* algorithm = new G4LogLogInterpolator;
608 return algorithm;
609}
610
611G4int G4PixeCrossSectionHandler::NumberOfComponents(G4int Z) const
612{
613 G4int n = 0;
614
615 std::map<G4int,G4IDataSet*,std::less<G4int> >::const_iterator pos;
616 pos = dataMap.find(Z);
617 if (pos!= dataMap.end())
618 {
619 G4IDataSet* dataSet = (*pos).second;
620 n = (G4int)dataSet->NumberOfComponents();
621 }
622 else
623 {
624 G4cout << "WARNING: G4PixeCrossSectionHandler::NumberOfComponents did not "
625 << "find Z = "
626 << Z << G4endl;
627 }
628 return n;
629}
630
631
632std::vector<G4IDataSet*>*
633G4PixeCrossSectionHandler::BuildCrossSectionsForMaterials(const G4DataVector& energyVector)
634{
635 G4DataVector* energies;
636 G4DataVector* data;
637
638 std::vector<G4IDataSet*>* matCrossSections = new std::vector<G4IDataSet*>;
639
640 //const G4ProductionCutsTable* theCoupleTable=G4ProductionCutsTable::GetProductionCutsTable();
641 //std::size_t numOfCouples = theCoupleTable->GetTableSize();
642
643 std::size_t nOfBins = energyVector.size();
644 const auto interpolationAlgo = std::unique_ptr<G4IInterpolator>(CreateInterpolation());
645
646 const G4MaterialTable* materialTable = G4Material::GetMaterialTable();
647 if (materialTable == 0)
648 G4Exception("G4PixeCrossSectionHandler::BuildCrossSectionsForMaterials",
649 "pii00000230",
651 "no MaterialTable found");
652
653 std::size_t nMaterials = G4Material::GetNumberOfMaterials();
654
655 for (std::size_t mat=0; mat<nMaterials; ++mat)
656 {
657 const G4Material* material = (*materialTable)[mat];
658 G4int nElements = (G4int)material->GetNumberOfElements();
659 const G4ElementVector* elementVector = material->GetElementVector();
660 const G4double* nAtomsPerVolume = material->GetAtomicNumDensityVector();
661
662 G4IInterpolator* algo = interpolationAlgo->Clone();
663
664 G4IDataSet* setForMat = new G4CompositeDataSet(algo,1.,1.);
665
666 for (G4int i=0; i<nElements; ++i) {
667
668 G4int Z = (G4int) (*elementVector)[i]->GetZ();
669 G4double density = nAtomsPerVolume[i];
670
671 energies = new G4DataVector;
672 data = new G4DataVector;
673
674
675 for (std::size_t bin=0; bin<nOfBins; ++bin)
676 {
677 G4double e = energyVector[bin];
678 energies->push_back(e);
679 G4double cross = 0.;
680 if (Z >= zMin && Z <= zMax) cross = density*FindValue(Z,e);
681 data->push_back(cross);
682 }
683
684 G4IInterpolator* algo1 = interpolationAlgo->Clone();
685 G4IDataSet* elSet = new G4DataSet(i,energies,data,algo1,1.,1.);
686 setForMat->AddComponent(elSet);
687 }
688
689 matCrossSections->push_back(setForMat);
690 }
691 return matCrossSections;
692}
693
694
696 G4double kineticEnergy,
697 G4double Z,
698 G4double deltaCut) const
699{
700 // Cross section formula is OK for spin=0, 1/2, 1 only !
701 // Calculates the microscopic cross section in Geant4 internal units
702 // Formula documented in Geant4 Phys. Ref. Manual
703 // ( it is called for elements, AtomicNumber = z )
704
705 G4double cross = 0.;
706
707 // Particle mass and energy
708 G4double particleMass = particleDef->GetPDGMass();
709 G4double energy = kineticEnergy + particleMass;
710
711 // Some kinematics
712 G4double gamma = energy / particleMass;
713 G4double beta2 = 1. - 1. / (gamma * gamma);
714 G4double var = electron_mass_c2 / particleMass;
715 G4double tMax = 2. * electron_mass_c2 * (gamma*gamma - 1.) / (1. + 2.*gamma*var + var*var);
716
717 // Calculate the total cross section
718
719 if ( tMax > deltaCut )
720 {
721 var = deltaCut / tMax;
722 cross = (1. - var * (1. - beta2 * std::log(var))) / deltaCut;
723
724 G4double spin = particleDef->GetPDGSpin() ;
725
726 // +term for spin=1/2 particle
727 if (spin == 0.5)
728 {
729 cross += 0.5 * (tMax - deltaCut) / (energy*energy);
730 }
731 // +term for spin=1 particle
732 else if (spin > 0.9 )
733 {
734 cross += -std::log(var) / (3.*deltaCut) + (tMax-deltaCut) *
735 ((5.+1./var)*0.25 /(energy*energy) - beta2 / (tMax*deltaCut))/3.;
736 }
737 cross *= twopi_mc2_rcl2 * Z / beta2 ;
738 }
739
740 //std::cout << "Microscopic = " << cross/barn
741 // << ", e = " << kineticEnergy/MeV <<std:: endl;
742
743 return cross;
744}
745
std::vector< const G4Element * > G4ElementVector
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::vector< G4Material * > G4MaterialTable
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
G4bool contains(const G4double &) const
virtual const G4IDataSet * GetComponent(G4int componentId) const =0
virtual G4bool LoadData(const G4String &fileName)=0
virtual size_t NumberOfComponents(void) const =0
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
virtual void AddComponent(G4IDataSet *dataSet)=0
virtual void PrintData(void) const =0
virtual G4IInterpolator * Clone() const =0
const G4ElementVector * GetElementVector() const
G4double GetZ() const
const G4double * GetAtomicNumDensityVector() const
static std::size_t GetNumberOfMaterials()
const G4double * GetVecNbOfAtomsPerVolume() const
std::size_t GetIndex() const
static G4MaterialTable * GetMaterialTable()
std::size_t GetNumberOfElements() const
void Initialise(G4IInterpolator *interpolation, const G4String &modelK="ecpssr", const G4String &modelL="ecpssr", const G4String &modelM="ecpssr", G4double minE=1 *CLHEP::keV, G4double maxE=0.1 *CLHEP::GeV, G4int nBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=6, G4int maxZ=92)
G4double MicroscopicCrossSection(const G4ParticleDefinition *particleDef, G4double kineticEnergy, G4double Z, G4double deltaCut) const
G4double FindValue(G4int Z, G4double e) const
G4int SelectRandomShell(G4int Z, G4double e) const
void LoadShellData(const G4String &dataFile)
G4double ValueForMaterial(const G4Material *material, G4double e) const
G4int SelectRandomAtom(const G4Material *material, G4double e) const