Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsProtonElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// G4 Physics class: G4ChipsProtonElasticXS for pA elastic cross sections
30// Created: M.V. Kossov, CERN/ITEP(Moscow), 10-OCT-01
31// The last update: M.V. Kossov, CERN/ITEP (Moscow) 12-Jan-10 (from G4QElCrSect)
32//
33// -------------------------------------------------------------------------------
34// Short description: Interaction cross-sections for the elastic process.
35// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
36// -------------------------------------------------------------------------------
37
38
40#include "G4SystemOfUnits.hh"
41#include "G4DynamicParticle.hh"
43#include "G4Proton.hh"
44#include "G4Nucleus.hh"
45#include "G4ParticleTable.hh"
46#include "G4NucleiProperties.hh"
47#include "G4IonTable.hh"
48
49// factory
51//
53
54namespace {
55 G4double mProt;
56 G4double mProt2;
57}
58
59G4ChipsProtonElasticXS::G4ChipsProtonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
60{
61 // Initialization of the parameters
62 lPMin=-8.; // Min tabulated logarithmicMomentum(D)
63 lPMax= 8.; // Max tabulated logarithmicMomentum(D)
64 dlnP=(lPMax-lPMin)/nLast;// LogStep in the table(D)
65 onlyCS=false;// Flag toCalculateOnlyCS(not Si/Bi)(L)
66 lastSIG=0.; // Last calculated cross section (L)
67 lastLP=-10.;// Last log(mom_ofTheIncidentHadron)(L)
68 lastTM=0.; // Last t_maximum (L)
69 theSS=0.; // The Last sq.slope of 1st difr.Max(L)
70 theS1=0.; // The Last mantissa of 1st difr.Max(L)
71 theB1=0.; // The Last slope of 1st difruct.Max(L)
72 theS2=0.; // The Last mantissa of 2nd difr.Max(L)
73 theB2=0.; // The Last slope of 2nd difruct.Max(L)
74 theS3=0.; // The Last mantissa of 3d difr. Max(L)
75 theB3=0.; // The Last slope of 3d difruct. Max(L)
76 theS4=0.; // The Last mantissa of 4th difr.Max(L)
77 theB4=0.; // The Last slope of 4th difruct.Max(L)
78 lastTZ=0; // Last atomic number of the target
79 lastTN=0; // Last # of neutrons in the target
80 lastPIN=0.; // Last initialized max momentum
81 lastCST=0; // Elastic cross-section table
82 lastPAR=0; // Parameters for FunctionalCalculation
83 lastSST=0; // E-dep of sq.slope of the 1st dif.Max
84 lastS1T=0; // E-dep of mantissa of the 1st dif.Max
85 lastB1T=0; // E-dep of the slope of the 1st difMax
86 lastS2T=0; // E-dep of mantissa of the 2nd difrMax
87 lastB2T=0; // E-dep of the slope of the 2nd difMax
88 lastS3T=0; // E-dep of mantissa of the 3d difr.Max
89 lastB3T=0; // E-dep of the slope of the 3d difrMax
90 lastS4T=0; // E-dep of mantissa of the 4th difrMax
91 lastB4T=0; // E-dep of the slope of the 4th difMax
92 lastN=0; // The last N of calculated nucleus
93 lastZ=0; // The last Z of calculated nucleus
94 lastP=0.; // Last used in cross section Momentum
95 lastTH=0.; // Last threshold momentum
96 lastCS=0.; // Last value of the Cross Section
97 lastI=0; // The last position in the DAMDB
98
99 mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV
100 mProt2= mProt*mProt;
101
102
103}
104
105
107{
108 std::vector<G4double*>::iterator pos;
109 for (pos=CST.begin(); pos<CST.end(); pos++)
110 { delete [] *pos; }
111 CST.clear();
112 for (pos=PAR.begin(); pos<PAR.end(); pos++)
113 { delete [] *pos; }
114 PAR.clear();
115 for (pos=SST.begin(); pos<SST.end(); pos++)
116 { delete [] *pos; }
117 SST.clear();
118 for (pos=S1T.begin(); pos<S1T.end(); pos++)
119 { delete [] *pos; }
120 S1T.clear();
121 for (pos=B1T.begin(); pos<B1T.end(); pos++)
122 { delete [] *pos; }
123 B1T.clear();
124 for (pos=S2T.begin(); pos<S2T.end(); pos++)
125 { delete [] *pos; }
126 S2T.clear();
127 for (pos=B2T.begin(); pos<B2T.end(); pos++)
128 { delete [] *pos; }
129 B2T.clear();
130 for (pos=S3T.begin(); pos<S3T.end(); pos++)
131 { delete [] *pos; }
132 S3T.clear();
133 for (pos=B3T.begin(); pos<B3T.end(); pos++)
134 { delete [] *pos; }
135 B3T.clear();
136 for (pos=S4T.begin(); pos<S4T.end(); pos++)
137 { delete [] *pos; }
138 S4T.clear();
139 for (pos=B4T.begin(); pos<B4T.end(); pos++)
140 { delete [] *pos; }
141 B4T.clear();
142
143}
144
145void
147{
148 outFile << "G4ChipsProtonElasticXS provides the elastic cross\n"
149 << "section for proton nucleus scattering as a function of incident\n"
150 << "momentum. The cross section is calculated using M. Kossov's\n"
151 << "CHIPS parameterization of cross section data.\n";
152}
153
155 const G4Element*,
156 const G4Material*)
157{
158 return true;
159}
160
161
163 const G4Isotope*,
164 const G4Element*,
165 const G4Material*)
166{
167 G4double pMom=Pt->GetTotalMomentum();
168 G4int tgN = A - tgZ;
169
170 return GetChipsCrossSection(pMom, tgZ, tgN, 2212);
171}
172
173
174// The main member function giving the collision cross section (P is in IU, CS is in mb)
175// Make pMom in independent units ! (Now it is MeV)
177{
178
179 G4double pEn=pMom;
180 onlyCS=false;
181
182 G4bool in=false; // By default the isotope must be found in the AMDB
183 lastP = 0.; // New momentum history (nothing to compare with)
184 lastN = tgN; // The last N of the calculated nucleus
185 lastZ = tgZ; // The last Z of the calculated nucleus
186 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
187 if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
188 { // The nucleus with projPDG is found in AMDB
189 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
190 {
191 lastI=i;
192 lastTH =colTH[i]; // Last THreshold (A-dependent)
193 if(pEn<=lastTH)
194 {
195 return 0.; // Energy is below the Threshold value
196 }
197 lastP =colP [i]; // Last Momentum (A-dependent)
198 lastCS =colCS[i]; // Last CrossSect (A-dependent)
199 if(lastP == pMom) // Do not recalculate
200 {
201 CalculateCrossSection(onlyCS,-1,i,2212,lastZ,lastN,pMom); // Update param's only
202 return lastCS*millibarn; // Use theLastCS
203 }
204 in = true; // This is the case when the isotop is found in DB
205 // Momentum pMom is in IU ! @@ Units
206 lastCS=CalculateCrossSection(onlyCS,-1,i,2212,lastZ,lastN,pMom); // read & update
207 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
208 {
209 lastTH=pEn;
210 }
211 break; // Go out of the LOOP with found lastI
212 }
213 } // End of attampt to find the nucleus in DB
214 if(!in) // This nucleus has not been calculated previously
215 {
216 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
217 lastCS=CalculateCrossSection(onlyCS,0,lastI,2212,lastZ,lastN,pMom);//calculate&create
218 if(lastCS<=0.)
219 {
220 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
221 if(pEn>lastTH)
222 {
223 lastTH=pEn;
224 }
225 }
226 colN.push_back(tgN);
227 colZ.push_back(tgZ);
228 colP.push_back(pMom);
229 colTH.push_back(lastTH);
230 colCS.push_back(lastCS);
231 return lastCS*millibarn;
232 } // End of creation of the new set of parameters
233 else
234 {
235 colP[lastI]=pMom;
236 colCS[lastI]=lastCS;
237 }
238 return lastCS*millibarn;
239}
240
241// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
242// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
243G4double G4ChipsProtonElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
244 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
245{
246 G4double pMom=pIU/GeV; // All calculations are in GeV
247 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
248 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
249 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
250 {
251 if(F<0) // the AMDB must be loded
252 {
253 lastPIN = PIN[I]; // Max log(P) initialised for this table set
254 lastPAR = PAR[I]; // Pointer to the parameter set
255 lastCST = CST[I]; // Pointer to the total sross-section table
256 lastSST = SST[I]; // Pointer to the first squared slope
257 lastS1T = S1T[I]; // Pointer to the first mantissa
258 lastB1T = B1T[I]; // Pointer to the first slope
259 lastS2T = S2T[I]; // Pointer to the second mantissa
260 lastB2T = B2T[I]; // Pointer to the second slope
261 lastS3T = S3T[I]; // Pointer to the third mantissa
262 lastB3T = B3T[I]; // Pointer to the rhird slope
263 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
264 lastB4T = B4T[I]; // Pointer to the 4-th slope
265 }
266 if(lastLP>lastPIN && lastLP<lPMax)
267 {
268 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
269 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
270 }
271 }
272 else // This isotope wasn't initialized => CREATE
273 {
274 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
275 lastPAR[nLast]=0; // Initialization for VALGRIND
276 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
277 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
278 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
279 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
280 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
281 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
282 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
283 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
284 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
285 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
286 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
287 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
288 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
289 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
290 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
291 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
292 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
293 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
294 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
295 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
296 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
297 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
298 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
299 } // End of creation/update of the new set of parameters and tables
300 // =--------= NOW Update (if necessary) and Calculate the Cross Section =------------=
301 if(lastLP>lastPIN && lastLP<lPMax)
302 {
303 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
304 }
305 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
306 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
307 {
308 if(lastLP==lastPIN)
309 {
310 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
311 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
312 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
313 lastSIG = lastCST[blast];
314 if(!onlyCS) // Skip the differential cross-section parameters
315 {
316 theSS = lastSST[blast];
317 theS1 = lastS1T[blast];
318 theB1 = lastB1T[blast];
319 theS2 = lastS2T[blast];
320 theB2 = lastB2T[blast];
321 theS3 = lastS3T[blast];
322 theB3 = lastB3T[blast];
323 theS4 = lastS4T[blast];
324 theB4 = lastB4T[blast];
325 }
326 }
327 else
328 {
329 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
330 G4int blast=static_cast<int>(shift); // the lower bin number
331 if(blast<0) blast=0;
332 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
333 shift-=blast; // step inside the unit bin
334 G4int lastL=blast+1; // the upper bin number
335 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
336 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
337 if(!onlyCS) // Skip the differential cross-section parameters
338 {
339 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
340 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
341 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
342 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
343 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
344 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
345 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
346 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
347 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
348 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
349 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
350 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
351 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
352 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
353 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
354 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
355 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
356 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
357 }
358 }
359 }
360 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
361 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
362 return lastSIG;
363}
364
365// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
366G4double G4ChipsProtonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
367 G4int tgZ, G4int tgN)
368{
369 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
370 static const G4double pwd=2727;
371 const G4int n_npel=24; // #of parameters for np-elastic (<nPoints=128)
372 const G4int n_ppel=32; // #of parameters for pp-elastic (<nPoints=128)
373 // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10--11--12--13- -14-
374 G4double np_el[n_npel]={12.,.05,.0001,5.,.35,6.75,.14,19.,.6,6.75,.14,13.,.14,.6,.00013,
375 75.,.001,7.2,4.32,.012,2.5,0.0,12.,.34};
376 // -15--16--17- -18- -19--20--21--22--23-
377 // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13-
378 G4double pp_el[n_ppel]={2.865,18.9,.6461,3.,9.,.425,.4276,.0022,5.,74.,3.,3.4,.2,.17,
379 .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,
380 8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
381 // -14--15- -16- -17- -18- -19- -20- -21- -22- -23- -24- -25-
382 // -26- -27- -28- -29- -30- -31-
383 if(PDG==2212)
384 {
385 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
386 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
387 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
388 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
389 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
390 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
391 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
392 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
393 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
394 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
395 //
396 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
397 {
398 if ( tgZ == 0 && tgN == 1 )
399 {
400 for (G4int ip=0; ip<n_npel; ip++) lastPAR[ip]=np_el[ip]; // pn
401
402 }
403 else if ( tgZ == 1 && tgN == 0 )
404 {
405 for (G4int ip=0; ip<n_ppel; ip++) lastPAR[ip]=pp_el[ip]; // pp
406 }
407 else
408 {
409 G4double a=tgZ+tgN;
410 G4double sa=std::sqrt(a);
411 G4double ssa=std::sqrt(sa);
412 G4double asa=a*sa;
413 G4double a2=a*a;
414 G4double a3=a2*a;
415 G4double a4=a3*a;
416 G4double a5=a4*a;
417 G4double a6=a4*a2;
418 G4double a7=a6*a;
419 G4double a8=a7*a;
420 G4double a9=a8*a;
421 G4double a10=a5*a5;
422 G4double a12=a6*a6;
423 G4double a14=a7*a7;
424 G4double a16=a8*a8;
425 G4double a17=a16*a;
426 G4double a20=a16*a4;
427 G4double a32=a16*a16;
428 // Reaction cross-section parameters (pel=peh_fit.f)
429 lastPAR[0]=5./(1.+22./asa); // p1
430 lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3.6/a3); // p2
431 lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/(1.+1.3E-6*a3); // p3
432 lastPAR[3]=1.3*a; // p4
433 lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4); // p5
434 lastPAR[5]=.07*asa/(1.+.009*a2); // p6
435 lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2.E-16/a+3.E-19*a)); // p7 (11)
436 lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E16/a20)/(1.+6.E-9*a4)+.015/a2; // p8
437 lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a16+5.E-7*a3)+.0003/sa; // p9 (10)
438 // @@ the differential cross-section is parameterized separately for A>6 & A<7
439 if(a<6.5)
440 {
441 G4double a28=a16*a12;
442 // The main pre-exponent (pel_sg)
443 lastPAR[ 9]=4000*a; // p1
444 lastPAR[10]=1.2e7*a8+380*a17; // p2
445 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
446 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
447 lastPAR[13]=.28*a; // p5
448 lastPAR[14]=1.2*a2+2.3; // p6
449 lastPAR[15]=3.8/a; // p7
450 // The main slope (pel_sl)
451 lastPAR[16]=.01/(1.+.0024*a5); // p1
452 lastPAR[17]=.2*a; // p2
453 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
454 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
455 // The main quadratic (pel_sh)
456 lastPAR[20]=2.25*a3; // p1
457 lastPAR[21]=18.; // p2
458 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
459 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
460 // The 1st max pre-exponent (pel_qq)
461 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
462 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
463 lastPAR[26]=.0006*a3; // p3
464 // The 1st max slope (pel_qs)
465 lastPAR[27]=10.+4.e-8*a12*a; // p1
466 lastPAR[28]=.114; // p2
467 lastPAR[29]=.003; // p3
468 lastPAR[30]=2.e-23; // p4
469 // The effective pre-exponent (pel_ss)
470 lastPAR[31]=1./(1.+.0001*a8); // p1
471 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
472 lastPAR[33]=.03; // p3
473 // The effective slope (pel_sb)
474 lastPAR[34]=a/2; // p1
475 lastPAR[35]=2.e-7*a4; // p2
476 lastPAR[36]=4.; // p3
477 lastPAR[37]=64./a3; // p4
478 // The gloria pre-exponent (pel_us)
479 lastPAR[38]=1.e8*std::exp(.32*asa); // p1
480 lastPAR[39]=20.*std::exp(.45*asa); // p2
481 lastPAR[40]=7.e3+2.4e6/a5; // p3
482 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
483 lastPAR[42]=2.5*a; // p5
484 // The gloria slope (pel_ub)
485 lastPAR[43]=920.+.03*a8*a3; // p1
486 lastPAR[44]=93.+.0023*a12; // p2
487 }
488 else
489 {
490 G4double p1a10=2.2e-28*a10;
491 G4double r4a16=6.e14/a16;
492 G4double s4a16=r4a16*r4a16;
493 // a24
494 // a36
495 // The main pre-exponent (peh_sg)
496 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
497 lastPAR[10]=.06*std::pow(a,.6); // p2
498 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
499 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
500 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
501 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
502 // The main slope (peh_sl)
503 lastPAR[15]=400./a12+2.e-22*a9; // p1
504 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
505 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
506 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
507 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
508 lastPAR[20]=9.+100./a; // p6
509 // The main quadratic (peh_sh)
510 lastPAR[21]=.002*a3+3.e7/a6; // p1
511 lastPAR[22]=7.e-15*a4*asa; // p2
512 lastPAR[23]=9000./a4; // p3
513 // The 1st max pre-exponent (peh_qq)
514 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
515 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
516 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
517 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
518 // The 1st max slope (peh_qs)
519 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
520 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
521 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
522 lastPAR[31]=100./asa; // p4
523 // The 2nd max pre-exponent (peh_ss)
524 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
525 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
526 lastPAR[34]=1.3+3.e5/a4; // p3
527 lastPAR[35]=500./(a2+50.)+3; // p4
528 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
529 // The 2nd max slope (peh_sb)
530 lastPAR[37]=.4*asa+3.e-9*a6; // p1
531 lastPAR[38]=.0005*a5; // p2
532 lastPAR[39]=.002*a5; // p3
533 lastPAR[40]=10.; // p4
534 // The effective pre-exponent (peh_us)
535 lastPAR[41]=.05+.005*a; // p1
536 lastPAR[42]=7.e-8/sa; // p2
537 lastPAR[43]=.8*sa; // p3
538 lastPAR[44]=.02*sa; // p4
539 lastPAR[45]=1.e8/a3; // p5
540 lastPAR[46]=3.e32/(a32+1.e32); // p6
541 // The effective slope (peh_ub)
542 lastPAR[47]=24.; // p1
543 lastPAR[48]=20./sa; // p2
544 lastPAR[49]=7.e3*a/(sa+1.); // p3
545 lastPAR[50]=900.*sa/(1.+500./a3); // p4
546 }
547 // Parameter for lowEnergyNeutrons
548 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
549 }
550 lastPAR[nLast]=pwd;
551 // and initialize the zero element of the table
552 G4double lp=lPMin; // ln(momentum)
553 G4bool memCS=onlyCS; // ??
554 onlyCS=false;
555 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
556 onlyCS=memCS;
557 lastSST[0]=theSS;
558 lastS1T[0]=theS1;
559 lastB1T[0]=theB1;
560 lastS2T[0]=theS2;
561 lastB2T[0]=theB2;
562 lastS3T[0]=theS3;
563 lastB3T[0]=theB3;
564 lastS4T[0]=theS4;
565 lastB4T[0]=theB4;
566 }
567 if(LP>ILP)
568 {
569 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
570 if(ini<0) ini=0;
571 if(ini<nPoints)
572 {
573 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
574 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
575 if(fin>=ini)
576 {
577 G4double lp=0.;
578 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
579 {
580 lp=lPMin+ip*dlnP; // ln(momentum)
581 G4bool memCS=onlyCS;
582 onlyCS=false;
583 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
584 onlyCS=memCS;
585 lastSST[ip]=theSS;
586 lastS1T[ip]=theS1;
587 lastB1T[ip]=theB1;
588 lastS2T[ip]=theS2;
589 lastB2T[ip]=theB2;
590 lastS3T[ip]=theS3;
591 lastB3T[ip]=theB3;
592 lastS4T[ip]=theS4;
593 lastB4T[ip]=theB4;
594 }
595 return lp;
596 }
597 else G4cout<<"*Warning*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="
598 <<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP<<" > ILP="
599 <<ILP<<" nothing is done!"<<G4endl;
600 }
601 else G4cout<<"*Warning*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="
602 <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
603 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
604 }
605 }
606 else
607 {
608 // G4cout<<"*Error*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
609 // <<", N="<<tgN<<", while it is defined only for PDG=2212"<<G4endl;
610 // throw G4QException("G4ChipsProtonElasticXS::GetPTables: only pA're implemented");
612 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
613 << ", while it is defined only for PDG=2212 (p)" << G4endl;
614 G4Exception("G4ChipsProtonElasticXS::GetPTables()", "HAD_CHPS_0000",
615 FatalException, ed);
616 }
617 return ILP;
618}
619
620// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
622{
623 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
624 static const G4double third=1./3.;
625 static const G4double fifth=1./5.;
626 static const G4double sevth=1./7.;
627 if(PDG!=2212) G4cout<<"**Warning*G4ChipsProtonElasticXS::GetExT:PDG="<<PDG<<G4endl;
628 if(onlyCS) G4cout<<"**Warning*G4ChipsProtonElasticXS::GetExchanT:onlyCS=1"<<G4endl;
629 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
630 G4double q2=0.;
631 if(tgZ==1 && tgN==0) // ===> p+p=p+p
632 {
633 G4double E1=lastTM*theB1;
634 G4double R1=(1.-std::exp(-E1));
635 G4double E2=lastTM*theB2;
636 G4double R2=(1.-std::exp(-E2*E2*E2));
637 G4double E3=lastTM*theB3;
638 G4double R3=(1.-std::exp(-E3));
639 G4double I1=R1*theS1/theB1;
640 G4double I2=R2*theS2;
641 G4double I3=R3*theS3;
642 G4double I12=I1+I2;
643 G4double rand=(I12+I3)*G4UniformRand();
644 if (rand<I1 )
645 {
646 G4double ran=R1*G4UniformRand();
647 if(ran>1.) ran=1.;
648 q2=-std::log(1.-ran)/theB1;
649 }
650 else if(rand<I12)
651 {
652 G4double ran=R2*G4UniformRand();
653 if(ran>1.) ran=1.;
654 q2=-std::log(1.-ran);
655 if(q2<0.) q2=0.;
656 q2=std::pow(q2,third)/theB2;
657 }
658 else
659 {
660 G4double ran=R3*G4UniformRand();
661 if(ran>1.) ran=1.;
662 q2=-std::log(1.-ran)/theB3;
663 }
664 }
665 else
666 {
667 G4double a=tgZ+tgN;
668 G4double E1=lastTM*(theB1+lastTM*theSS);
669 G4double R1=(1.-std::exp(-E1));
670 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
671 G4double tm2=lastTM*lastTM;
672 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
673 if(a>6.5)E2*=tm2; // for heavy nuclei
674 G4double R2=(1.-std::exp(-E2));
675 G4double E3=lastTM*theB3;
676 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
677 G4double R3=(1.-std::exp(-E3));
678 G4double E4=lastTM*theB4;
679 G4double R4=(1.-std::exp(-E4));
680 G4double I1=R1*theS1;
681 G4double I2=R2*theS2;
682 G4double I3=R3*theS3;
683 G4double I4=R4*theS4;
684 G4double I12=I1+I2;
685 G4double I13=I12+I3;
686 G4double rand=(I13+I4)*G4UniformRand();
687 if(rand<I1)
688 {
689 G4double ran=R1*G4UniformRand();
690 if(ran>1.) ran=1.;
691 q2=-std::log(1.-ran)/theB1;
692 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
693 }
694 else if(rand<I12)
695 {
696 G4double ran=R2*G4UniformRand();
697 if(ran>1.) ran=1.;
698 q2=-std::log(1.-ran)/theB2;
699 if(q2<0.) q2=0.;
700 if(a<6.5) q2=std::pow(q2,third);
701 else q2=std::pow(q2,fifth);
702 }
703 else if(rand<I13)
704 {
705 G4double ran=R3*G4UniformRand();
706 if(ran>1.) ran=1.;
707 q2=-std::log(1.-ran)/theB3;
708 if(q2<0.) q2=0.;
709 if(a>6.5) q2=std::pow(q2,sevth);
710 }
711 else
712 {
713 G4double ran=R4*G4UniformRand();
714 if(ran>1.) ran=1.;
715 q2=-std::log(1.-ran)/theB4;
716 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
717 }
718 }
719 if(q2<0.) q2=0.;
720 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
721 if(q2>lastTM)
722 {
723 q2=lastTM;
724 }
725 return q2*GeVSQ;
726}
727
728// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
729G4double G4ChipsProtonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
730{
731 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
732 if(onlyCS) G4cout<<"*Warning*G4ChipsProtonElasticXS::GetSlope:onlyCS=true"<<G4endl;
733 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
734 if(PDG!=2212)
735 {
736 // G4cout<<"*Error*G4ChipsProtonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ<<", N="
737 // <<tgN<<", while it is defined only for PDG=2212"<<G4endl;
738 // throw G4QException("G4ChipsProtonElasticXS::GetSlope: pA are implemented");
740 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
741 << ", while it is defined only for PDG=2212 (p)" << G4endl;
742 G4Exception("G4ChipsProtonElasticXS::GetSlope()", "HAD_CHPS_0000",
743 FatalException, ed);
744 }
745 if(theB1<0.) theB1=0.;
746 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
747 return theB1/GeVSQ;
748}
749
750// Returns half max(Q2=-t) in independent units (MeV^2)
752{
753 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
754 return lastTM*HGeVSQ;
755}
756
757// lastLP is used, so calculating tables, one need to remember and then recover lastLP
758G4double G4ChipsProtonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
759 G4int tgN)
760{
761 if(PDG!=2212) G4cout<<"*Warning*G4ChipsProtonElasticXS::GetTabV:PDG="<<PDG<<G4endl;
762
763 //AR-24Apr2018 Switch to allow transuranic elements
764 const G4bool isHeavyElementAllowed = true;
765 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
766 {
767 G4cout<<"*Warning*G4QProtonElCS::GetTabValue: (1-92) No isotopes for Z="<<tgZ<<G4endl;
768 return 0.;
769 }
770 G4int iZ=tgZ-1; // Z index
771 if(iZ<0)
772 {
773 iZ=0; // conversion of the neutron target to the proton target
774 tgZ=1;
775 tgN=0;
776 }
777 G4double p=std::exp(lp); // momentum
778 G4double sp=std::sqrt(p); // sqrt(p)
779 G4double p2=p*p;
780 G4double p3=p2*p;
781 G4double p4=p3*p;
782 if ( tgZ == 1 && tgN == 0 ) // pp/nn
783 {
784 G4double p2s=p2*sp;
785 G4double dl2=lp-lastPAR[8];
786 theSS=lastPAR[31];
787 theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1.+lastPAR[11]/p4/p)+
788 (lastPAR[12]/p2+lastPAR[13]*p)/(p4+lastPAR[14]*sp);
789 theB1=lastPAR[15]*std::pow(p,lastPAR[16])/(1.+lastPAR[17]/p3);
790 theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[20]*p);
791 theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]/sp);
792 theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastPAR[26]*p2+lastPAR[27]);
793 theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[30]);
794 theS4=0.;
795 theB4=0.;
796 // Returns the total elastic pp cross-section (to avoid spoiling lastSIG)
797 G4double dl1=lp-lastPAR[3];
798 return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+(lastPAR[1]+lastPAR[2]*dl1*dl1+lastPAR[4]/p)
799 /(1.+lastPAR[5]*lp)/(1.+lastPAR[6]/p4);
800 }
801 else
802 {
803 G4double p5=p4*p;
804 G4double p6=p5*p;
805 G4double p8=p6*p2;
806 G4double p10=p8*p2;
807 G4double p12=p10*p2;
808 G4double p16=p8*p8;
809 //G4double p24=p16*p8;
810 G4double dl=lp-5.;
811 G4double a=tgZ+tgN;
812 if(a<6.5)
813 {
814 G4double pah=std::pow(p,a/2);
815 G4double pa=pah*pah;
816 G4double pa2=pa*pa;
817
818 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
819 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
820 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
821 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
822 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
823 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
824 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
825 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
826 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
827 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
828 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
829 }
830 else
831 {
832 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
833 lastPAR[13]/(p5+lastPAR[14]/p16);
834 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
835 lastPAR[17]/(1.+lastPAR[18]/p4);
836 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
837 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
838 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
839 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
840 lastPAR[33]/(1.+lastPAR[34]/p6);
841 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
842 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
843 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
844 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
845 }
846 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
847 // p1 p2 p3 p6
848 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p+lastPAR[5]/p6)+
849 lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/(p4+std::pow((lastPAR[8]/p),lastPAR[6]));
850 // p4 p5 p8 p9 p7
851 }
852 return 0.;
853} // End of GetTableValues
854
855// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
856G4double G4ChipsProtonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
857 G4double pP)
858{
859
860 G4double pP2=pP*pP; // squared momentum of the projectile
861 if(tgZ==1 && tgN==0)
862 {
863 G4double tMid=std::sqrt(pP2+mProt2)*mProt-mProt2; // CMS 90deg value of -t=Q2 (GeV^2)
864 return tMid+tMid;
865 }
866 else if(tgZ || tgN) // ---> pA
867 {
868 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
869 G4double dmt=mt+mt;
870 G4double mds=dmt*std::sqrt(pP2+mProt2)+mProt2+mt*mt;// Mondelstam mds
871 return dmt*dmt*pP2/mds;
872 }
873 else
874 {
875 // G4cout<<"*Error*G4ChipsProtonElasticXS::GetQ2max: PDG="<<PDG<<", Z="<<tgZ<<", N="
876 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
877 // throw G4QException("G4ChipsProtonElasticXS::GetQ2max: only pA are implemented");
879 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
880 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
881 G4Exception("G4ChipsProtonElasticXS::GetQ2max()", "HAD_CHPS_0000",
882 FatalException, ed);
883 return 0;
884 }
885}
#define G4_DECLARE_XS_FACTORY(cross_section)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual void CrossSectionDescription(std::ostream &) const
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4Proton * Proton()
Definition G4Proton.cc:90