Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4XTRTransparentRegRadModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
28#include <complex>
29
32#include "Randomize.hh"
33#include "G4Integrator.hh"
34#include "G4Gamma.hh"
35
36////////////////////////////////////////////////////////////////////////////
37//
38// Constructor, destructor
39
41 G4Material* foilMat,G4Material* gasMat,
42 G4double a, G4double b, G4int n,
43 const G4String& processName) :
44 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
45{
46 G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
47
48 // Build energy and angular integral spectra of X-ray TR photons from
49 // a radiator
50 fExitFlux = true;
51 fAlphaPlate = 10000;
52 fAlphaGas = 1000;
53
54 // BuildTable();
55}
56
57///////////////////////////////////////////////////////////////////////////
58
60{
61 ;
62}
63
64///////////////////////////////////////////////////////////////////////////
65//
66//
67
69{
70 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
71 G4int k, kMax, kMin;
72
73 aMa = GetPlateLinearPhotoAbs(energy);
74 bMb = GetGasLinearPhotoAbs(energy);
75
76 if(fCompton)
77 {
78 aMa += GetPlateCompton(energy);
79 bMb += GetGasCompton(energy);
80 }
81 aMa *= fPlateThick;
82 bMb *= fGasThick;
83
84 sigma = aMa + bMb;
85
86 cofPHC = 4.*pi*hbarc;
87 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
88 cof1 = fPlateThick*tmp;
89 cof2 = fGasThick*tmp;
90
91 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
92 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
93 cofMin /= cofPHC;
94
95 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
96 // else kMin = 1;
97
98
99 kMin = G4int(cofMin);
100 if (cofMin > kMin) kMin++;
101
102 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
103 // tmp /= cofPHC;
104 // kMax = G4int(tmp);
105 // if(kMax < 0) kMax = 0;
106 // kMax += kMin;
107
108
109 kMax = kMin + 19; // 5; // 9; // kMin + G4int(tmp);
110
111 // tmp /= fGamma;
112 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
113 // G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
114
115 for( k = kMin; k <= kMax; k++ )
116 {
117 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
118 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
119
120 if( k == kMin && kMin == G4int(cofMin) )
121 {
122 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
123 }
124 else
125 {
126 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
127 }
128 // G4cout<<"k = "<<k<<"; sum = "<<sum<<G4endl;
129 }
130 result = 4.*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
131 result *= ( 1. - std::exp(-fPlateNumber*sigma) )/( 1. - std::exp(-sigma) );
132 return result;
133}
134
135
136///////////////////////////////////////////////////////////////////////////
137//
138// Approximation for radiator interference factor for the case of
139// fully Regular radiator. The plate and gas gap thicknesses are fixed .
140// The mean values of the plate and gas gap thicknesses
141// are supposed to be about XTR formation zones but much less than
142// mean absorption length of XTR photons in coresponding material.
143
146 G4double gamma, G4double varAngle )
147{
148 /*
149 G4double result, Za, Zb, Ma, Mb, sigma;
150
151 Za = GetPlateFormationZone(energy,gamma,varAngle);
152 Zb = GetGasFormationZone(energy,gamma,varAngle);
153 Ma = GetPlateLinearPhotoAbs(energy);
154 Mb = GetGasLinearPhotoAbs(energy);
155 sigma = Ma*fPlateThick + Mb*fGasThick;
156
157 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
158 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
159
160 G4complex Ha = std::pow(Ca,-fAlphaPlate);
161 G4complex Hb = std::pow(Cb,-fAlphaGas);
162 G4complex H = Ha*Hb;
163 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
164 * G4double(fPlateNumber) ;
165 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
166 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
167 // *(1.0 - std::pow(H,fPlateNumber)) ;
168 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
169 // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
170 result = 2.0*std::real(R);
171 return result;
172 */
173 // numerically unstable result
174
175 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
176
177 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
178 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
180 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
181 sigma = aMa*fPlateThick + bMb*fGasThick;
182 Qa = std::exp(-0.5*aMa);
183 Qb = std::exp(-0.5*bMb);
184 Q = Qa*Qb;
185
186 G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
187 G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
188 G4complex H = Ha*Hb;
189 G4complex Hs = conj(H);
190 D = 1.0 /( (1. - Q)*(1. - Q) +
191 4.*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
192 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
194 G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
195 // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
196 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
197 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
198 result = 2.0*std::real(R);
199 return result;
200
201}
202
203
204//
205//
206////////////////////////////////////////////////////////////////////////////
207
208
209
210
211
212
213
214
double D(double temp)
double G4double
Definition: G4Types.hh:83
std::complex< G4double > G4complex
Definition: G4Types.hh:88
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetGasCompton(G4double)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4double GetPlateCompton(G4double)
G4XTRTransparentRegRadModel(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRTransparentRegRadModel")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override
G4double SpectralXTRdEdx(G4double energy) override