Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LatticePhysical.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26/// \file materials/src/G4LatticePhysical.cc
27/// \brief Implementation of the G4LatticePhysical class
28//
29//
30// 20131115 Save rotation results in local variable, report verbosely
31// 20131116 Replace G4Transform3D with G4RotationMatrix
32
33#include "G4LatticePhysical.hh"
34#include "G4LatticeLogical.hh"
36#include "G4RotationMatrix.hh"
37#include "G4SystemOfUnits.hh"
38
39
40// Unit vectors defined for convenience (avoid memory churn)
41
42namespace {
43 G4ThreeVector xhat(1,0,0), yhat(0,1,0), zhat(0,0,1), nullVec(0,0,0);
44}
45
46
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48
50 const G4RotationMatrix* Rot)
51 : verboseLevel(0), fTheta(0), fPhi(0), fLattice(Lat) {
53}
54
56
57
58//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
59
61 if (!Rot) { // No orientation specified
62 fLocalToGlobal = fGlobalToLocal = G4RotationMatrix::IDENTITY;
63 } else {
64 fLocalToGlobal = fGlobalToLocal = *Rot; // Frame rotation
65 fGlobalToLocal.invert();
66 }
67
68 if (verboseLevel) {
69 G4cout << "G4LatticePhysical::SetPhysicalOrientation " << *Rot
70 << "\nfLocalToGlobal: " << fLocalToGlobal
71 << "\nfGlobalToLocal: " << fGlobalToLocal
72 << G4endl;
73 }
74}
75
76//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
77
79 fTheta = t_rot;
80 fPhi = p_rot;
81
82 if (verboseLevel)
83 G4cout << "G4LatticePhysical::SetLatticeOrientation " << fTheta << " "
84 << fPhi << G4endl;
85}
86
87//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
88
90 fTheta = halfpi - std::atan2(n+0.000001,l+0.000001);
91 fPhi = halfpi - std::atan2(l+0.000001,k+0.000001);
92
93 if (verboseLevel)
94 G4cout << "G4LatticePhysical::SetMillerOrientation(" << l << k << n
95 << ") : " << fTheta << " " << fPhi << G4endl;
96}
97
98
99//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100
101///////////////////////////////
102//Loads the group velocity in m/s
103/////////////////////////////
105 G4ThreeVector k) const {
106 if (verboseLevel>1) G4cout << "G4LatticePhysical::MapKtoV " << k << G4endl;
107
108 k.rotate(yhat,fTheta).rotate(zhat, fPhi);
109 return fLattice->MapKtoV(polarizationState, k);
110}
111
112///////////////////////////////
113//Loads the normalized direction vector along VG
114///////////////////////////////
116 G4ThreeVector k) const {
117 if (verboseLevel>1) G4cout << "G4LatticePhysical::MapKtoVDir " << k << G4endl;
118
119 k.rotate(yhat,fTheta).rotate(zhat,fPhi);
120
121 G4ThreeVector VG = fLattice->MapKtoVDir(polarizationState, k);
122
123 return VG.rotate(zhat,-fPhi).rotate(yhat,-fTheta);
124}
125
126//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
127
128// Apply orientation transforms to specified vector
129
132 if (verboseLevel>1) {
133 G4cout << "G4LatticePhysical::RotateToGlobal " << dir
134 << "\nusing fLocalToGlobal " << fLocalToGlobal
135 << G4endl;
136 }
137
138 G4ThreeVector result = fLocalToGlobal*dir;
139 if (verboseLevel>1) G4cout << " result " << result << G4endl;
140
141 return result;
142}
143
146 if (verboseLevel>1) {
147 G4cout << "G4LatticePhysical::RotateToLocal " << dir
148 << "\nusing fGlobalToLocal " << fGlobalToLocal
149 << G4endl;
150 }
151
152 G4ThreeVector result = fGlobalToLocal*dir;
153 if (verboseLevel>1) G4cout << " result " << result << G4endl;
154
155 return result;
156}
Definition of the G4LatticeLogical class.
Definition of the G4LatticePhysical class.
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
Hep3Vector & rotate(double, const Hep3Vector &)
Definition: ThreeVectorR.cc:24
static DLL_API const HepRotation IDENTITY
Definition: Rotation.h:366
HepRotation & invert()
virtual G4double MapKtoV(G4int, const G4ThreeVector &) const
virtual G4ThreeVector MapKtoVDir(G4int, const G4ThreeVector &) const
void SetLatticeOrientation(G4double, G4double)
void SetPhysicalOrientation(const G4RotationMatrix *Rot)
G4ThreeVector RotateToLocal(const G4ThreeVector &dir) const
G4ThreeVector RotateToGlobal(const G4ThreeVector &dir) const
virtual ~G4LatticePhysical()
G4double MapKtoV(G4int, G4ThreeVector) const
G4ThreeVector MapKtoVDir(G4int, G4ThreeVector) const
void SetMillerOrientation(G4int, G4int, G4int)
G4LatticePhysical(const G4LatticeLogical *Lat=0, const G4RotationMatrix *Rot=0)