40 model_name=
"D0Topippim2pi0";
54 double mag[35], pha[35];
55 mag[0]= 100.0; pha[0]= 0.0;
56 mag[1]= 7.95507; pha[1]= -0.0687407;
57 mag[2]= 37.5559; pha[2]= -1.74946;
58 mag[3]= 61.2172; pha[3]= 2.98079;
59 mag[4]= 187.79; pha[4]= 2.64471;
60 mag[5]= 385.474; pha[5]= -0.137107;
61 mag[6]= 0.330788; pha[6]= 0.268133;
62 mag[7]= 0.584175; pha[7]= -2.89693;
63 mag[8]= 127.158; pha[8]= -2.47773;
64 mag[9]= 339.914; pha[9]= 2.22856;
65 mag[10]=0.320888; pha[10]=-2.6194;
66 mag[11]=0.366283; pha[11]=-0.26867;
67 mag[12]=14.1344; pha[12]=-0.41164;
68 mag[13]=86.0865; pha[13]=-2.49649;
69 mag[14]=6.1541; pha[14]=-1.18299;
70 mag[15]=56.6067; pha[15]=0.142977;
71 mag[16]=92.3073; pha[16]=-2.15881;
72 mag[17]=80.9453; pha[17]=0.825815;
73 mag[18]=16.9555; pha[18]=-2.98994;
74 mag[19]=9.72524; pha[19]=-1.39929;
75 mag[20]=5.71448; pha[20]=0.271902;
76 mag[21]=21.4195; pha[21]=-1.23701;
77 mag[22]=56.8867; pha[22]=-0.385837;
78 mag[23]=231.626; pha[23]=2.14842;
79 mag[24]=2938.45; pha[24]=-0.693491;
80 mag[25]=7252.7; pha[25]=2.23659;
81 mag[26]=5165.87; pha[26]=0.913557;
82 mag[27]=11508.6; pha[27]=-1.07187;
83 mag[28]=2461.86; pha[28]=1.8709;
84 mag[29]=8757.75; pha[29]=2.40756;
85 mag[30]=19.7413; pha[30]=-1.0753;
86 mag[31]=66.3826; pha[31]=2.34666;
87 mag[32]=11.2904; pha[32]=-0.822345;
88 mag[33]=2.04576; pha[33]=-0.281429;
89 mag[34]=0.57927; pha[34]=2.7182;
92 for(
int i=0; i<35; i++){
94 fitpara.push_back(ctemp);
98 for(
int i=0; i<4; i++){
99 for(
int j=0; j<4; j++){
103 g_uv.push_back(-1.0);
110 epsilon_uvmn.clear();
111 for(
int i=0; i<4; i++){
112 for(
int j=0; j<4; j++){
113 for(
int k=0; k<4; k++){
114 for(
int l=0; l<4; l++){
115 if(i==j || i==k || i==l || j==k || j==l || k==l){
116 epsilon_uvmn.push_back(0.0);
118 if(i==0 && j==1 && k==2 && l==3) epsilon_uvmn.push_back(1.0);
119 if(i==0 && j==1 && k==3 && l==2) epsilon_uvmn.push_back(-1.0);
120 if(i==0 && j==2 && k==1 && l==3) epsilon_uvmn.push_back(-1.0);
121 if(i==0 && j==2 && k==3 && l==1) epsilon_uvmn.push_back(1.0);
122 if(i==0 && j==3 && k==1 && l==2) epsilon_uvmn.push_back(1.0);
123 if(i==0 && j==3 && k==2 && l==1) epsilon_uvmn.push_back(-1.0);
125 if(i==1 && j==0 && k==2 && l==3) epsilon_uvmn.push_back(-1.0);
126 if(i==1 && j==0 && k==3 && l==2) epsilon_uvmn.push_back(1.0);
127 if(i==1 && j==2 && k==0 && l==3) epsilon_uvmn.push_back(1.0);
128 if(i==1 && j==2 && k==3 && l==0) epsilon_uvmn.push_back(-1.0);
129 if(i==1 && j==3 && k==0 && l==2) epsilon_uvmn.push_back(-1.0);
130 if(i==1 && j==3 && k==2 && l==0) epsilon_uvmn.push_back(1.0);
132 if(i==2 && j==0 && k==1 && l==3) epsilon_uvmn.push_back(1.0);
133 if(i==2 && j==0 && k==3 && l==1) epsilon_uvmn.push_back(-1.0);
134 if(i==2 && j==1 && k==0 && l==3) epsilon_uvmn.push_back(-1.0);
135 if(i==2 && j==1 && k==3 && l==0) epsilon_uvmn.push_back(1.0);
136 if(i==2 && j==3 && k==0 && l==1) epsilon_uvmn.push_back(1.0);
137 if(i==2 && j==3 && k==1 && l==0) epsilon_uvmn.push_back(-1.0);
139 if(i==3 && j==0 && k==1 && l==2) epsilon_uvmn.push_back(-1.0);
140 if(i==3 && j==0 && k==2 && l==1) epsilon_uvmn.push_back(1.0);
141 if(i==3 && j==1 && k==0 && l==2) epsilon_uvmn.push_back(1.0);
142 if(i==3 && j==1 && k==2 && l==0) epsilon_uvmn.push_back(-1.0);
143 if(i==3 && j==2 && k==0 && l==1) epsilon_uvmn.push_back(-1.0);
144 if(i==3 && j==2 && k==1 && l==0) epsilon_uvmn.push_back(1.0);
153 math_pi = 3.1415926f;
154 mass_Pion = 0.13957f;
161 m2_Pi0 = m_Pi0*m_Pi0;
163 m0_rho7700 = 0.77526;
166 m0_rho770p = 0.77511;
232 for(
int i=0; i<_nd; i++){
236 double prob = AmplitudeSquare(charm, tagmode);
241void EvtD0Topippim2pi0::setInput(
double* pip,
double* pim,
double* pi01,
double* pi02){
242 m_Pip.clear(); m_Pim.clear(); m_Pi01.clear(); m_Pi02.clear();
243 m_Pip.push_back(pip[0]); m_Pim.push_back(pim[0]); m_Pi01.push_back(pi01[0]); m_Pi02.push_back(pi02[0]);
244 m_Pip.push_back(pip[1]); m_Pim.push_back(pim[1]); m_Pi01.push_back(pi01[1]); m_Pi02.push_back(pi02[1]);
245 m_Pip.push_back(pip[2]); m_Pim.push_back(pim[2]); m_Pi01.push_back(pi01[2]); m_Pi02.push_back(pi02[2]);
246 m_Pip.push_back(pip[3]); m_Pim.push_back(pim[3]); m_Pi01.push_back(pi01[3]); m_Pi02.push_back(pi02[3]);
249vector<double> EvtD0Topippim2pi0::sum_tensor(vector<double> pa, vector<double> pb)
251 if(pa.size()!=pb.size()){
252 cout<<
"error sum tensor"<<endl;
255 vector<double> temp; temp.clear();
256 for(
int i=0; i<pa.size(); i++){
257 double sum = pa[i] + pb[i];
263double EvtD0Topippim2pi0::contract_11_0(vector<double> pa, vector<double> pb){
264 if(pa.size()!=pb.size() || pa.size()!=4) {
265 cout<<
"error contract 11->0"<<endl;
268 double temp = pa[3]*pb[3] - pa[0]*pb[0] - pa[1]*pb[1] - pa[2]*pb[2];
273vector<double> EvtD0Topippim2pi0::contract_21_1(vector<double> pa, vector<double> pb){
274 if(pa.size()!=16 || pb.size()!=4) {
275 cout<<
"error contract 21->1"<<endl;
278 vector<double> temp; temp.clear();
279 for(
int i=0; i<4; i++){
281 for(
int j=0; j<4; j++){
283 sum += pa[idx]*pb[j]*g_uv[4*j+j];
291double EvtD0Topippim2pi0::contract_22_0(vector<double> pa, vector<double> pb){
292 if(pa.size()!=pb.size() || pa.size()!=16) {
293 cout<<
"error contract 22->0"<<endl;
297 for(
int i=0; i<4; i++){
298 for(
int j=0; j<4; j++){
300 temp += pa[idx]*pb[idx]*g_uv[4*i+i]*g_uv[4*j+j];
307vector<double> EvtD0Topippim2pi0::contract_31_2(vector<double> pa, vector<double> pb){
308 if(pa.size()!=64 || pb.size()!=4) {
309 cout<<
"error contract 31->2"<<endl;
312 vector<double> temp; temp.clear();
313 for(
int i=0; i<16; i++){
315 for(
int j=0; j<4; j++){
317 sum += pa[idx]*pb[j]*g_uv[4*j+j];
325vector<double> EvtD0Topippim2pi0::contract_41_3(vector<double> pa, vector<double> pb){
326 if(pa.size()!=256|| pb.size()!=4) {
327 cout<<
"error contract 41->3"<<endl;
330 vector<double> temp; temp.clear();
331 for(
int i=0; i<64; i++){
333 for(
int j=0; j<4; j++){
335 sum += pa[idx]*pb[j]*g_uv[4*j+j];
343vector<double> EvtD0Topippim2pi0::contract_42_2(vector<double> pa, vector<double> pb){
344 if(pa.size()!=256|| pb.size()!=16) {
345 cout<<
"error contract 42->2"<<endl;
348 vector<double> temp; temp.clear();
349 for(
int i=0; i<16; i++){
351 for(
int j=0; j<4; j++){
352 for(
int k=0; k<4; k++){
353 int idxa = i*16+j*4+k;
355 sum += pa[idxa] * pb[idxb] * g_uv[4*j+j] * g_uv[4*k+k];
364vector<double> EvtD0Topippim2pi0::contract_22_2(vector<double> pa, vector<double> pb){
365 if(pa.size()!=16|| pb.size()!=16) {
366 cout<<
"error contract 42->2"<<endl;
369 vector<double> temp; temp.clear();
370 for(
int i=0; i<4; i++){
371 for(
int j=0; j<4; j++){
373 for(
int k=0; k<4; k++){
376 sum += pa[idxa] * pb[idxb] * g_uv[4*k+k];
418vector<double> EvtD0Topippim2pi0::OrbitalTensors(vector<double> pa, vector<double> pb, vector<double> pc,
double r,
int rank)
420 if(pa.size()!=4 || pb.size()!=4 || pc.size()!=4) {
421 cout<<
"Error: pa, pb, pc"<<endl;
425 cout<<
"Error: L<0 !!!"<<endl;
430 vector<double> mr; mr.clear();
432 for(
int i=0; i<4; i++){
433 double temp = pb[i] - pc[i];
438 double msa = contract_11_0(pa, pa);
439 double msb = contract_11_0(pb, pb);
440 double msc = contract_11_0(pc, pc);
443 double top = msa + msb - msc;
444 double Q2abc = top*top/(4.0*msa) - msb;
447 double Q_0 = 0.197321f/r;
448 double Q_02 = Q_0*Q_0;
449 double Q_04 = Q_02*Q_02;
453 double Q4abc = Q2abc*Q2abc;
457 double mB1 = sqrt(2.0f/(Q2abc + Q_02));
458 double mB2 = sqrt(13.0f/(Q4abc + (3.0f*Q_02)*Q2abc + 9.0f*Q_04));
463 vector<double> proj_uv; proj_uv.clear();
464 for(
int i=0; i<4; i++){
465 for(
int j=0; j<4; j++){
467 double temp = -g_uv[idx] + pa[i]*pa[j]/msa;
468 proj_uv.push_back(temp);
475 vector<double>
t;
t.clear();
481 vector<double> t_u; t_u.clear();
482 vector<double> Bt_u; Bt_u.clear();
483 for(
int i=0; i<4; i++){
485 for(
int j=0; j<4; j++){
487 temp += -proj_uv[idx]*mr[j]*g_uv[j*4+j];
490 Bt_u.push_back(temp*mB1);
492 if(rank==1)
return Bt_u;
494 double t_u2 = contract_11_0(t_u,t_u);
496 vector<double> Bt_uv; Bt_uv.clear();
497 for(
int i=0; i<4; i++){
498 for(
int j=0; j<4; j++){
500 double temp = t_u[i]*t_u[j] + (1.0/3.0)*proj_uv[idx]*t_u2;
501 Bt_uv.push_back(temp*mB2);
504 if(rank==2)
return Bt_uv;
508 cout<<
"rank>2: please add it by yourself!!!"<<endl;
514vector<double> EvtD0Topippim2pi0::ProjectionTensors(vector<double> pa,
int rank)
517 cout<<
"Error: pa"<<endl;
521 cout<<
"Error: L<0 !!!"<<endl;
525 double msa = contract_11_0(pa, pa);
528 vector<double> proj_uv; proj_uv.clear();
529 for(
int i=0; i<4; i++){
530 for(
int j=0; j<4; j++){
532 double temp = -g_uv[idx] + pa[i]*pa[j]/msa;
533 proj_uv.push_back(temp);
540 vector<double>
t;
t.clear();
549 vector<double> proj_uvmn; proj_uvmn.clear();
550 for(
int i=0; i<4; i++){
551 for(
int j=0; j<4; j++){
552 for(
int k=0; k<4; k++){
553 for(
int l=0; l<4; l++){
555 int idx1_1 = 4*i + k;
556 int idx1_2 = 4*i + l;
557 int idx1_3 = 4*i + j;
559 int idx2_1 = 4*j + l;
560 int idx2_2 = 4*j + k;
561 int idx2_3 = 4*k + l;
563 double temp = (1.0/2.0)*(proj_uv[idx1_1]*proj_uv[idx2_1] + proj_uv[idx1_2]*proj_uv[idx2_2]) - (1.0/3.0)*proj_uv[idx1_3]*proj_uv[idx2_3];
564 proj_uvmn.push_back(temp);
573 cout<<
"rank>2: please add it by yourself!!!"<<endl;
577double EvtD0Topippim2pi0::fundecaymomentum(
double mr2,
double m1_2,
double m2_2){
578 double mr = sqrt(mr2);
579 double poly = mr2*mr2 + m1_2*m1_2 + m2_2*m2_2 - 2*m1_2*mr2 -2*m2_2*mr2 -2*m1_2*m2_2;
580 double ret = sqrt(poly)/(2*mr);
587complex<double> EvtD0Topippim2pi0::breitwigner(
double mx2,
double mr,
double wr)
593 double diff = mr2-mx2;
594 double denom = diff*diff + wr*wr*mr2;
600 output_x = diff/denom;
601 output_y = wr*mr/denom;
612double EvtD0Topippim2pi0::h(
double m,
double q){
613 double h = 2.0/math_pi*
q/m*log((m+2.0*
q)/(2.0*mass_Pion));
617double EvtD0Topippim2pi0::dh(
double m0,
double q0){
618 double dh = h(m0,q0)*(1.0/(8.0*q0*q0)-1.0/(2.0*m0*m0))+1.0/(2.0*math_pi*m0*m0);
622double EvtD0Topippim2pi0::f(
double m0,
double sx,
double q0,
double q){
624 double f = m0*m0/(q0*q0*q0)*(
q*
q*(h(m,
q)-h(m0,q0))+(m0*m0-sx)*q0*q0*dh(m0,q0));
628double EvtD0Topippim2pi0::d(
double m0,
double q0){
629 double d = 3.0/math_pi*mass_Pion*mass_Pion/(q0*q0)*log((m0+2.0*q0)/(2.0*mass_Pion)) + m0/(2.0*math_pi*q0) - (mass_Pion*mass_Pion*m0)/(math_pi*q0*q0*q0);
633double EvtD0Topippim2pi0::fundecaymomentum2(
double mr2,
double m1_2,
double m2_2){
634 double mr = sqrt(mr2);
635 double poly = mr2*mr2 + m1_2*m1_2 + m2_2*m2_2 - 2*m1_2*mr2 -2*m2_2*mr2 -2*m1_2*m2_2;
636 double ret = poly/(4.0f*mr2);
642double EvtD0Topippim2pi0::wid(
double mass,
double sa,
double sb,
double sc,
double r,
int l){
646 double q = fundecaymomentum2(sa,sb,sc);
647 double q0 = fundecaymomentum2(sa0,sb,sc);
652 if(l == 1) F = sqrt((1.0+z0)/(1.0+z));
653 if(l == 2) F = sqrt((9.0+3.0*z0+z0*z0)/(9.0+3.0*z+z*z));
654 if(l == 3) F = sqrt((225.0+45.0*z0+6.0*z0*z0+z0*z0*z0)/(225.0+45.0*z+6.0*z*z+z*z*z));
655 if(l == 4) F = sqrt((11025.0+1575.0*z0+135.0*z0*z0+10.0*z0*z0*z0+z0*z0*z0*z0)/(11025.0+1575.0*z+135.0*z*z+10.0*z*z*z+z*z*z*z));
656 double t = sqrt(
q/q0);
659 for(i=0; i<(2*l+1); i++) {
662 widm *= (
mass/m*F*F);
667complex<double> EvtD0Topippim2pi0::GS(
double mx2,
double mr,
double wr,
double m1_2,
double m2_2,
double r,
int l){
670 double q = fundecaymomentum(mx2, m1_2, m2_2);
671 double q0 = fundecaymomentum(mr2, m1_2, m2_2);
672 double numer = 1.0+d(mr,q0)*wr/mr;
673 double denom_real = mr2-mx2+wr*
f(mr,mx2,q0,
q);
674 double denom_imag = mr*wr*wid(mr,mx2,m1_2,m2_2,r,l);
676 double denom = denom_real*denom_real+denom_imag*denom_imag;
677 double output_x = denom_real*numer/denom;
678 double output_y = denom_imag*numer/denom;
684complex<double> EvtD0Topippim2pi0::RBW(
double mx2,
double mr,
double wr,
double m1_2,
double m2_2,
double r,
int l){
685 double mx = sqrt(mx2);
687 double denom_real = mr2-mx2;
688 double denom_imag = 0;
689 if(m1_2>0 && m2_2>0){
690 denom_imag = mr*wr*wid(mr,mx2,m1_2,m2_2,r,l);
695 double denom = denom_real*denom_real+denom_imag*denom_imag;
696 double output_x = denom_real/denom;
697 double output_y = denom_imag/denom;
704double EvtD0Topippim2pi0::widT1260(
int i,
double g1,
double g2){
706 double wid1[300] = { 0.00100302, 0.0069383, 0.0223132, 0.0504984, 0.093998, 0.154569, 0.233464, 0.331844, 0.450141, 0.589068,
707 0.748192, 0.928578, 1.13001, 1.35227, 1.59548, 1.86005, 2.14633, 2.45252, 2.78199, 3.13055,
708 3.50351, 3.89773, 4.31274, 4.75409, 5.21133, 5.69991, 6.20735, 6.74638, 7.30128, 7.8858,
709 8.50289, 9.14654, 9.82395, 10.5209, 11.2643, 12.0436, 12.8585, 13.692, 14.598, 15.5291,
710 16.5158, 17.5337, 18.6289, 19.7599, 20.9847, 22.2557, 23.5959, 25.0095, 26.5123, 28.0789,
711 29.7542, 31.5143, 33.3769, 35.3462, 37.3911, 39.5988, 41.874, 44.2815, 46.7975, 49.401,
712 52.0553, 54.7753, 57.5932, 60.4542, 63.3049, 66.0665, 68.8987, 71.6282, 74.2613, 76.8713,
713 79.3528, 81.722, 84.1212, 86.227, 88.4243, 90.3478, 92.2478, 94.1483, 95.8541, 97.5086,
714 99.0092, 100.48, 101.861, 103.153, 104.338, 105.576, 106.696, 107.647, 108.761, 109.725,
715 110.625, 111.529, 112.426, 113.01, 113.877, 114.647, 115.086, 115.856, 116.533, 117.076,
716 117.646, 118.25, 118.653, 119.023, 119.554, 119.958, 120.384, 121.036, 121.402, 121.686,
717 122.44, 122.592, 122.979, 123.39, 123.819, 123.957, 124.459, 124.681, 125.071, 125.405,
718 125.769, 125.978, 126.542, 126.817, 127.017, 127.292, 127.765, 127.989, 128.542, 128.66,
719 128.923, 129.094, 129.441, 129.716, 130.23, 130.506, 130.658, 131.12, 131.308, 131.579,
720 131.994, 132.28, 132.594, 132.79, 133.107, 133.589, 133.935, 134.242, 134.484, 134.765,
721 135.208, 135.58, 135.922, 136.236, 136.545, 136.949, 137.216, 137.503, 137.994, 138.35,
722 138.62, 138.912, 139.413, 139.831, 140.137, 140.478, 141, 141.3, 141.807, 142.291,
723 142.864, 143.315, 143.678, 144.215, 144.587, 145.122, 145.8, 145.885, 146.583, 147.226,
724 147.661, 148.187, 148.698, 149.227, 149.832, 150.548, 151.122, 151.674, 152.074, 152.666,
725 153.295, 153.899, 154.661, 155.364, 155.908, 156.495, 157.36, 157.719, 158.533, 159.287,
726 159.79, 160.654, 161.257, 161.93, 162.437, 163.468, 163.957, 164.631, 165.414, 166.203,
727 166.738, 167.61, 168.453, 169.101, 170.111, 170.333, 171.123, 171.958, 173.018, 173.663,
728 174.213, 175.241, 175.579, 176.435, 177.291, 178.071, 178.969, 179.635, 180.118, 181.078,
729 182.007, 182.73, 183.282, 184.161, 184.981, 185.695, 186.506, 187.16, 187.996, 188.439,
730 189.416, 190.104, 190.759, 191.786, 192.331, 193.318, 193.836, 194.981, 195.634, 196.231,
731 196.832, 197.835, 198.608, 199.273, 199.854, 200.695, 201.719, 202.105, 202.958, 203.707,
732 204.306, 205.319, 205.977, 206.875, 207.687, 208.352, 209.04, 209.352, 210.313, 211.322,
733 212.02, 212.458, 213.246, 214.331, 214.923, 215.466, 216.536, 217.346, 217.867, 218.463,
734 219.201, 219.88, 220.829, 221.461, 222.399, 223.068, 223.712, 224.174, 224.837, 225.838,
735 227.019, 227.171, 227.797, 228.663, 229.429, 230.323, 230.845, 231.574, 232.417, 232.677 };
736 double wid2[300] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
743 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
744 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
747 1.87136e-06, 1.50063e-05, 5.10425e-05, 0.000122121, 0.000240853, 0.000420318, 0.000675161, 0.0010173, 0.00146434, 0.00203321,
748 0.00273489, 0.0035927, 0.00462579, 0.00584255, 0.00727372, 0.00895462, 0.0108831, 0.013085, 0.0156197, 0.0184865,
749 0.0217078, 0.0253423, 0.0294103, 0.0339191, 0.0389837, 0.0446351, 0.0508312, 0.0577268, 0.0653189, 0.0737049,
750 0.0829819, 0.0930611, 0.104328, 0.116663, 0.130105, 0.144922, 0.16122, 0.179091, 0.198759, 0.220133,
751 0.243916, 0.269803, 0.298861, 0.330061, 0.365741, 0.40437, 0.447191, 0.49501, 0.548576, 0.606445,
752 0.674414, 0.748353, 0.831686, 0.929938, 1.03771, 1.16187, 1.30387, 1.47341, 1.65629, 1.88318,
753 2.14353, 2.44169, 2.79831, 3.2009, 3.65522, 4.16317, 4.69597, 5.2585, 5.85965, 6.44984,
754 7.04202, 7.60113, 8.14571, 8.73195, 9.24537, 9.75717, 10.2093, 10.6731, 11.1487, 11.5819,
755 12.0158, 12.4253, 12.8113, 13.2073, 13.5995, 13.9317, 14.312, 14.6595, 14.9511, 15.2668,
756 15.6092, 15.9349, 16.1873, 16.5049, 16.819, 17.0743, 17.3621, 17.6094, 17.8418, 18.0681,
757 18.3141, 18.5914, 18.8187, 19.0562, 19.2282, 19.4918, 19.7326, 19.9112, 20.134, 20.3386,
758 20.511, 20.6865, 20.8958, 21.0518, 21.2967, 21.44, 21.6361, 21.8012, 21.9523, 22.1736,
759 22.2615, 22.4207, 22.6056, 22.7198, 22.9299, 23.0605, 23.2959, 23.3808, 23.4961, 23.6793,
760 23.7843, 23.9697, 24.0689, 24.1919, 24.405, 24.3898, 24.6018, 24.7294, 24.789, 24.9978,
761 25.0626, 25.1728, 25.2809, 25.3579, 25.5444, 25.5995, 25.7644, 25.8397, 25.9229, 26.095,
762 26.1495, 26.2899, 26.3871, 26.54, 26.6603, 26.7008, 26.7836, 26.907, 26.9653, 26.9969,
763 27.1226, 27.226, 27.3543, 27.4686, 27.4887, 27.6163, 27.6986, 27.7506, 27.7884, 27.8662,
764 27.9886, 28.0573, 28.1238, 28.2612, 28.3209, 28.3457, 28.4392, 28.5086, 28.6399, 28.7603,
765 28.788, 28.8502, 28.9038, 28.9667, 28.975, 29.0032, 29.2681, 29.2392, 29.2572, 29.3364 };
767 return wid1[i]*
g1+wid2[i]*g2;
770double EvtD0Topippim2pi0::anywid1260(
double sc,
double g1,
double g2){
772 double smin = (0.13957*3)*(0.13957*3);
774 int od = (sc - 0.18)/dh;
775 double sc_m = 0.18 + od*dh;
777 if(sc>=0.18 && sc<=3.17){
778 widuse = ((sc-sc_m)/dh)*(widT1260(od+1,
g1,g2)-widT1260(od,
g1,g2))+widT1260(od,
g1,g2);
779 }
else if(sc<0.18 && sc>smin){
780 widuse = ((sc - smin)/(0.18-smin))*widT1260(0,
g1,g2);
782 widuse = widT1260(299,
g1,g2);
790complex<double> EvtD0Topippim2pi0::RBWa1260(
double mx2,
double mr,
double g1,
double g2){
792 double mx = sqrt(mx2);
794 double wid0 = anywid1260(mx2,
g1,g2);
796 double denom_real = mr2-mx2;
797 double denom_imag = mr*wid0;
799 double denom = denom_real*denom_real+denom_imag*denom_imag;
800 double output_x = denom_real/denom;
801 double output_y = denom_imag/denom;
809double EvtD0Topippim2pi0::widT1300(
int i){
810 double wid1[300] = { 0.0702928, 0.399073, 0.991742, 1.82025, 2.85953, 4.08606, 5.48082, 7.02683, 8.70496, 10.5007,
811 12.4053, 14.4026, 16.4831, 18.6423, 20.8642, 23.1544, 25.4896, 27.8703, 30.3015, 32.7861,
812 35.2622, 37.8173, 40.3819, 42.974, 45.5732, 48.2303, 50.8659, 53.5741, 56.28, 59.0242,
813 61.738, 64.5642, 67.377, 70.1605, 73.0155, 75.8849, 78.7611, 81.7366, 84.7156, 87.7527,
814 90.7217, 93.8402, 96.8516, 100.036, 103.168, 106.483, 109.772, 113.098, 116.491, 120.013,
815 123.618, 127.069, 130.983, 134.868, 138.605, 142.625, 147.007, 151.154, 155.625, 160.1,
816 164.776, 169.651, 174.646, 179.669, 185.084, 190.409, 196.147, 201.788, 207.901, 214.041,
817 220.327, 226.505, 233.334, 239.816, 246.878, 253.563, 260.393, 267.453, 274.5, 282.15,
818 289.014, 296.45, 303.808, 311.427, 318.649, 326.965, 334.298, 341.576, 349.715, 356.89,
819 365.029, 372.677, 379.882, 387.677, 395.178, 402.445, 410.353, 418.649, 424.994, 432.156,
820 440.002, 448.394, 454.382, 460.97, 468.446, 475.847, 481.956, 489.729, 496.094, 501.22,
821 509.278, 514.618, 521.06, 528.247, 534.246, 540.312, 547.316, 552.549, 559.193, 566.059,
822 572.882, 578.147, 585.118, 589.989, 596.717, 601.222, 607.749, 613.96, 621.107, 625.218,
823 630.396, 635.57, 641.175, 646.024, 651.984, 657.156, 661.385, 666.804, 672.088, 675.939,
824 681.207, 685.072, 690.63, 694.767, 699.469, 704.1, 709.445, 713.704, 716.909, 720.681,
825 726.12, 730.403, 733.553, 739.123, 742.156, 746.6, 750.027, 753.462, 757.426, 761.595,
826 764.336, 768.251, 772.371, 775.963, 778.886, 781.905, 784.798, 788.825, 792.372, 796.27,
827 800.361, 803.544, 806.544, 808.819, 812.146, 814.989, 819.234, 820.073, 824.067, 828.047,
828 830.277, 833.013, 835.374, 838.463, 840.82, 844.655, 846.391, 849.408, 851.659, 853.977,
829 856.409, 860.029, 862.128, 866.104, 866.864, 869.24, 872.133, 872.591, 876.528, 879.029,
830 880.786, 883.8, 886.065, 887.511, 890.301, 892.086, 894.429, 895.666, 897.961, 900.712,
831 901.559, 904.787, 906.882, 908.034, 911.366, 911.249, 914.274, 916.238, 918.105, 920.585,
832 920.473, 924.468, 923.888, 926.046, 928.648, 930.3, 931.861, 934.253, 934.081, 936.95,
833 938.319, 940.464, 940.539, 943.393, 944.729, 946.944, 947.712, 948.948, 951.026, 952.121,
834 954.114, 955.146, 956.206, 959.056, 960.316, 962.919, 961.946, 964.324, 966.134, 967.689,
835 968.612, 970.357, 972.302, 973.514, 976.512, 975.815, 979.043, 979.486, 981.285, 983.173,
836 983.96, 985.947, 987.447, 988.455, 991.739, 992.1, 993.045, 995.918, 997.377, 999.136,
837 1001.51, 1001.12, 1002.46, 1004.57, 1005.76, 1007.12, 1009.23, 1011.7, 1012.48, 1014.84,
838 1014.21, 1017.28, 1017.22, 1018.95, 1021.8, 1021.94, 1023.22, 1025.13, 1026.01, 1027.8,
839 1030.04, 1030.12, 1031.54, 1033.2, 1034.62, 1035.83, 1037.33, 1037.92, 1038.9, 1041.69 };
843double EvtD0Topippim2pi0::anywid1300(
double sc){
845 double smin = (0.13957*3)*(0.13957*3);
847 int od = (sc - 0.18)/dh;
848 double sc_m = 0.18 + od*dh;
850 if(sc>=0.18 && sc<=3.17){
851 widuse = ((sc-sc_m)/dh)*(widT1300(od+1)-widT1300(od))+widT1300(od);
852 }
else if(sc<0.18 && sc>smin){
853 widuse = ((sc - smin)/(0.18-smin))*widT1300(0);
855 widuse = widT1300(299);
862complex<double> EvtD0Topippim2pi0::RBWpi1300(
double mx2,
double mr,
double wr){
864 double mx = sqrt(mx2);
866 double g1 = wr/anywid1300(mr2);
867 double wid0 = anywid1300(mx2)*
g1;
869 double denom_real = mr2-mx2;
870 double denom_imag = mr*wid0;
872 double denom = denom_real*denom_real+denom_imag*denom_imag;
873 double output_x = denom_real/denom;
874 double output_y = denom_imag/denom;
882double EvtD0Topippim2pi0::widT1640(
int i){
883 double wid1[300] = { 1.38316e-05, 0.000403892, 0.00181814, 0.0048161, 0.00982907, 0.0172548, 0.0273979, 0.040567, 0.0569061, 0.0768551,
884 0.100513, 0.128031, 0.159729, 0.195626, 0.236099, 0.280881, 0.330745, 0.386095, 0.446448, 0.511879,
885 0.583827, 0.66167, 0.745453, 0.835386, 0.934317, 1.0386, 1.1513, 1.26975, 1.39901, 1.53362,
886 1.68291, 1.84163, 2.0066, 2.18366, 2.37394, 2.57742, 2.7905, 3.02463, 3.27434, 3.53467,
887 3.80737, 4.10838, 4.41975, 4.76341, 5.12572, 5.51301, 5.91839, 6.36597, 6.8457, 7.33806,
888 7.87328, 8.45901, 9.08869, 9.74744, 10.464, 11.2096, 12.0103, 12.8556, 13.7563, 14.7352,
889 15.7336, 16.7432, 17.8117, 18.9327, 20.0186, 21.1632, 22.3549, 23.5172, 24.6518, 25.7808,
890 26.9103, 28.016, 29.1542, 30.0458, 31.0808, 32.1018, 33.0395, 33.9151, 34.8873, 35.7289,
891 36.5603, 37.2489, 38.023, 38.7983, 39.55, 40.2977, 40.8819, 41.4564, 42.1864, 42.7368,
892 43.3923, 43.8651, 44.4667, 44.8108, 45.3935, 45.9551, 46.2652, 46.8683, 47.1943, 47.6864,
893 48.1666, 48.5599, 48.8894, 49.1867, 49.6234, 49.9326, 50.4594, 50.6707, 51.005, 51.2612,
894 51.7638, 51.8946, 52.3176, 52.5107, 52.7378, 52.9418, 53.4019, 53.3571, 53.7937, 54.137,
895 54.2265, 54.3471, 54.6637, 54.897, 55.2174, 55.1577, 55.7098, 55.8616, 55.8862, 56.2106,
896 56.3357, 56.5165, 56.6819, 56.7906, 56.9814, 57.0507, 57.3059, 57.4898, 57.5848, 57.5792,
897 57.7696, 58.0302, 58.1915, 58.3319, 58.3892, 58.4671, 58.6736, 58.7872, 58.7949, 58.8366,
898 59.0247, 59.0881, 59.2675, 59.479, 59.6261, 59.6111, 59.6055, 59.7286, 59.8806, 60.0424,
899 60.1126, 60.0742, 60.2066, 60.2253, 60.565, 60.6557, 60.7359, 60.6405, 60.6429, 60.8521,
900 60.8098, 61.0699, 61.1678, 61.0329, 61.0522, 61.1792, 61.3671, 61.4394, 61.5152, 61.6122,
901 61.584, 61.711, 61.707, 61.7254, 61.816, 61.9248, 61.9748, 61.9498, 62.0014, 62.0634,
902 62.2929, 62.2349, 62.2101, 62.4434, 62.4281, 62.4166, 62.4905, 62.6055, 62.5097, 62.5994,
903 62.6637, 62.6794, 62.7068, 62.7908, 62.8135, 63.0085, 62.8848, 62.8159, 63.047, 62.8632,
904 63.1119, 63.0864, 63.1423, 63.2334, 63.0695, 63.2902, 63.3719, 63.1882, 63.2649, 63.3338,
905 63.4709, 63.4662, 63.3746, 63.623, 63.6402, 63.5632, 63.6611, 63.6012, 63.5904, 63.7467,
906 63.5535, 63.7792, 63.5213, 63.829, 63.8696, 63.8047, 63.9557, 63.9433, 63.9363, 63.9436,
907 63.9804, 64.0707, 64.0105, 63.96, 64.0437, 64.0235, 64.1795, 64.1377, 64.073, 64.2282,
908 64.2933, 64.4369, 64.3887, 64.2474, 64.2373, 64.3553, 64.425, 64.4401, 64.3197, 64.4212,
909 64.5787, 64.4919, 64.6878, 64.4998, 64.5788, 64.6628, 64.6658, 64.5072, 64.7227, 64.7327,
910 64.4472, 64.6792, 64.7801, 64.5715, 64.7263, 64.8505, 64.7488, 64.6448, 64.8962, 64.8815,
911 64.821, 64.902, 64.8944, 64.8959, 64.8957, 64.7882, 65.0725, 64.8787, 64.797, 65.1112,
912 65.1212, 65.157, 64.9412, 65.2601, 65.0662, 65.0093, 65.0899, 65.1035, 65.0865, 65.3276 };
916double EvtD0Topippim2pi0::anywid1640(
double sc){
918 double smin = (0.13957*3)*(0.13957*3);
920 int od = (sc - 0.18)/dh;
921 double sc_m = 0.18 + od*dh;
923 if(sc>=0.18 && sc<=3.17){
924 widuse = ((sc-sc_m)/dh)*(widT1640(od+1)-widT1640(od))+widT1640(od);
925 }
else if(sc<0.18 && sc>smin){
926 widuse = ((sc - smin)/(0.18-smin))*widT1640(0);
928 widuse = widT1640(299);
935complex<double> EvtD0Topippim2pi0::RBWa1640(
double mx2,
double mr,
double wr){
937 double mx = sqrt(mx2);
939 double g1 = wr/anywid1640(mr2);
940 double wid0 = anywid1640(mx2)*
g1;
942 double denom_real = mr2-mx2;
943 double denom_imag = mr*wid0;
945 double denom = denom_real*denom_real+denom_imag*denom_imag;
946 double output_x = denom_real/denom;
947 double output_y = denom_imag/denom;
955double EvtD0Topippim2pi0::rho22(
double sc){
956 double rho[689] = { 3.70024e-18, 8.52763e-15, 1.87159e-13, 1.3311e-12, 5.61842e-12, 1.75224e-11, 4.48597e-11, 9.99162e-11, 2.00641e-10, 3.71995e-10,
957 6.47093e-10, 1.06886e-09, 1.69124e-09, 2.58031e-09, 3.8168e-09, 5.49601e-09, 7.72996e-09, 1.06509e-08, 1.44078e-08, 1.91741e-08,
958 2.51445e-08, 3.25345e-08, 4.15946e-08, 5.25949e-08, 6.58316e-08, 8.16443e-08, 1.00389e-07, 1.22455e-07, 1.48291e-07, 1.78348e-07,
959 2.1313e-07, 2.53192e-07, 2.99086e-07, 3.51462e-07, 4.10993e-07, 4.78349e-07, 5.54327e-07, 6.3972e-07, 7.35316e-07, 8.42099e-07,
960 9.61004e-07, 1.09295e-06, 1.2391e-06, 1.40051e-06, 1.57824e-06, 1.77367e-06, 1.98805e-06, 2.22257e-06, 2.47877e-06, 2.7581e-06,
961 3.06186e-06, 3.39182e-06, 3.74971e-06, 4.137e-06, 4.5555e-06, 5.00725e-06, 5.4939e-06, 6.01725e-06, 6.57992e-06, 7.18371e-06,
962 7.83044e-06, 8.52301e-06, 9.26342e-06, 1.00535e-05, 1.08967e-05, 1.17953e-05, 1.27514e-05, 1.37679e-05, 1.48482e-05, 1.59943e-05,
963 1.72088e-05, 1.84961e-05, 1.98586e-05, 2.12987e-05, 2.28207e-05, 2.44279e-05, 2.61228e-05, 2.79084e-05, 2.97906e-05, 3.17718e-05,
964 3.38544e-05, 3.60443e-05, 3.8345e-05, 4.07591e-05, 4.32903e-05, 4.59459e-05, 4.87285e-05, 5.16403e-05, 5.46887e-05, 5.7878e-05,
965 6.12111e-05, 6.46908e-05, 6.83274e-05, 7.21231e-05, 7.60817e-05, 8.0208e-05, 8.45102e-05, 8.89919e-05, 9.36544e-05, 9.85082e-05,
966 0.000103559, 0.000108812, 0.000114267, 0.000119938, 0.000125827, 0.00013194, 0.000138278, 0.000144857, 0.000151681, 0.000158752,
967 0.000166074, 0.000173663, 0.000181521, 0.000189652, 0.000198059, 0.000206761, 0.000215761, 0.000225063, 0.00023467, 0.000244599,
968 0.000254855, 0.00026544, 0.000276357, 0.000287629, 0.00029926, 0.000311253, 0.000323609, 0.000336351, 0.000349483, 0.000363009,
969 0.000376926, 0.000391264, 0.000406029, 0.000421225, 0.000436848, 0.000452921, 0.000469458, 0.000486461, 0.00050393, 0.00052187,
970 0.000540322, 0.000559278, 0.000578746, 0.00059872, 0.000619236, 0.0006403, 0.000661911, 0.000684074, 0.000706799, 0.000730127,
971 0.00075405, 0.000778569, 0.000803686, 0.000829443, 0.000855839, 0.000882879, 0.000910561, 0.000938898, 0.000967939, 0.000997674,
972 0.00102811, 0.00105923, 0.0010911, 0.0011237, 0.00115706, 0.00119117, 0.00122601, 0.00126168, 0.00129815, 0.00133543,
973 0.00137351, 0.00141242, 0.00145219, 0.00149283, 0.00153434, 0.0015767, 0.00161995, 0.00166415, 0.00170928, 0.00175534,
974 0.00180232, 0.00185028, 0.00189924, 0.00194919, 0.00200014, 0.00205207, 0.00210503, 0.0021591, 0.00221421, 0.0022704,
975 0.00232766, 0.00238602, 0.00244554, 0.00250619, 0.00256799, 0.0026309, 0.002695, 0.00276033, 0.00282689, 0.00289467,
976 0.00296367, 0.00303389, 0.00310543, 0.0031783, 0.00325244, 0.0033279, 0.0034046, 0.00348275, 0.00356229, 0.00364322,
977 0.00372555, 0.00380924, 0.00389438, 0.00398104, 0.00406914, 0.00415877, 0.00424985, 0.00434235, 0.00443651, 0.00453224,
978 0.00462954, 0.00472848, 0.00482894, 0.00493102, 0.00503483, 0.00514029, 0.00524749, 0.0053563, 0.00546675, 0.00557905,
979 0.0056931, 0.00580901, 0.0059267, 0.00604613, 0.00616735, 0.00629049, 0.00641557, 0.00654254, 0.00667142, 0.00680216,
980 0.00693472, 0.00706946, 0.00720621, 0.00734497, 0.0074858, 0.00762855, 0.00777338, 0.00792036, 0.00806957, 0.00822087,
981 0.00837426, 0.00852982, 0.0086875, 0.00884756, 0.00900991, 0.00917447, 0.00934137, 0.00951052, 0.00968194, 0.0098558,
982 0.010032, 0.0102108, 0.0103919, 0.0105754, 0.0107612, 0.0109496, 0.0111406, 0.0113343, 0.0115305, 0.0117293,
983 0.0119303, 0.0121343, 0.0123409, 0.0125502, 0.0127623, 0.0129771, 0.0131944, 0.0134145, 0.0136376, 0.0138636,
984 0.0140924, 0.0143241, 0.0145587, 0.0147959, 0.0150363, 0.0152797, 0.0155262, 0.0157758, 0.0160283, 0.0162838,
985 0.0165421, 0.016804, 0.0170691, 0.0173374, 0.0176087, 0.0178835, 0.0181612, 0.0184423, 0.0187269, 0.0190149,
986 0.0193063, 0.0196009, 0.0198991, 0.0202003, 0.0205052, 0.0208137, 0.0211259, 0.0214418, 0.0217611, 0.0220841,
987 0.0224105, 0.0227406, 0.0230746, 0.0234125, 0.0237542, 0.0240996, 0.0244486, 0.0248012, 0.025158, 0.0255188,
988 0.0258837, 0.0262527, 0.0266256, 0.0270025, 0.0273833, 0.027768, 0.0281572, 0.0285505, 0.0289483, 0.0293503,
989 0.0297564, 0.0301665, 0.0305808, 0.0309997, 0.0314231, 0.0318511, 0.0322835, 0.0327205, 0.0331616, 0.0336073,
990 0.0340576, 0.0345128, 0.0349727, 0.0354373, 0.0359066, 0.0363807, 0.0368589, 0.0373419, 0.0378302, 0.0383234,
991 0.0388218, 0.0393252, 0.0398336, 0.040347, 0.0408652, 0.041388, 0.0419165, 0.0424502, 0.0429893, 0.0435338,
992 0.0440833, 0.044638, 0.0451976, 0.0457627, 0.0463338, 0.0469103, 0.047492, 0.0480797, 0.0486729, 0.0492716,
993 0.0498757, 0.0504852, 0.0511009, 0.0517229, 0.0523503, 0.0529838, 0.0536231, 0.0542678, 0.054918, 0.0555743,
994 0.0562372, 0.0569065, 0.0575818, 0.0582634, 0.0589511, 0.0596454, 0.0603451, 0.061051, 0.0617635, 0.0624826,
995 0.0632084, 0.0639409, 0.06468, 0.0654254, 0.0661772, 0.0669346, 0.0676994, 0.0684714, 0.0692503, 0.0700354,
996 0.0708285, 0.0716277, 0.0724347, 0.0732479, 0.0740671, 0.0748947, 0.0757299, 0.0765715, 0.0774207, 0.0782771,
997 0.0791407, 0.0800119, 0.0808897, 0.0817743, 0.0826672, 0.0835684, 0.0844769, 0.0853938, 0.0863179, 0.0872493,
998 0.0881882, 0.0891349, 0.090089, 0.0910523, 0.0920236, 0.093002, 0.0939894, 0.094985, 0.0959887, 0.0970003,
999 0.0980191, 0.0990454, 0.100081, 0.101126, 0.10218, 0.103242, 0.104312, 0.105392, 0.10648, 0.107576,
1000 0.10868, 0.109793, 0.110916, 0.112048, 0.113188, 0.114339, 0.115498, 0.116666, 0.117843, 0.119028,
1001 0.120223, 0.121427, 0.122641, 0.123865, 0.125098, 0.126342, 0.127595, 0.128857, 0.130128, 0.131409,
1002 0.132701, 0.134002, 0.135314, 0.136635, 0.137966, 0.139308, 0.14066, 0.142022, 0.143394, 0.144774,
1003 0.146166, 0.14757, 0.148985, 0.15041, 0.151845, 0.153291, 0.154749, 0.156215, 0.157694, 0.159182,
1004 0.160682, 0.162194, 0.163718, 0.165251, 0.166797, 0.168354, 0.169921, 0.1715, 0.17309, 0.17469,
1005 0.176304, 0.177929, 0.179566, 0.181216, 0.182878, 0.184553, 0.186238, 0.187934, 0.189642, 0.191362,
1006 0.193096, 0.194842, 0.196602, 0.198374, 0.200158, 0.201954, 0.203764, 0.205586, 0.207421, 0.209266,
1007 0.211124, 0.212997, 0.214882, 0.216783, 0.218697, 0.220624, 0.222565, 0.224518, 0.226486, 0.228466,
1008 0.230458, 0.232463, 0.234484, 0.23652, 0.238569, 0.240633, 0.242711, 0.244803, 0.246909, 0.249031,
1009 0.251165, 0.253313, 0.255475, 0.257649, 0.259841, 0.262051, 0.264274, 0.266514, 0.268768, 0.271036,
1010 0.273319, 0.275618, 0.277932, 0.280259, 0.282602, 0.28496, 0.287338, 0.28973, 0.292138, 0.294563,
1011 0.297003, 0.299458, 0.30193, 0.304417, 0.306919, 0.309437, 0.311972, 0.314526, 0.317095, 0.319684,
1012 0.322289, 0.324911, 0.327551, 0.330205, 0.332876, 0.335567, 0.338271, 0.340993, 0.343736, 0.346496,
1013 0.349272, 0.352065, 0.354878, 0.35771, 0.360561, 0.363426, 0.366311, 0.369212, 0.372128, 0.375067,
1014 0.378027, 0.381006, 0.384001, 0.387014, 0.39005, 0.393106, 0.396181, 0.399271, 0.402384, 0.405513,
1015 0.408661, 0.41183, 0.41502, 0.418233, 0.421462, 0.424709, 0.42798, 0.43127, 0.434583, 0.437914,
1016 0.441267, 0.444637, 0.448022, 0.451434, 0.454868, 0.458328, 0.461805, 0.465302, 0.468821, 0.472364,
1017 0.475928, 0.47951, 0.483119, 0.486748, 0.490397, 0.494066, 0.497758, 0.501477, 0.505217, 0.508977,
1018 0.512762, 0.516567, 0.520394, 0.524247, 0.528125, 0.532027, 0.535947, 0.53989, 0.543852, 0.547844,
1019 0.551863, 0.555904, 0.559966, 0.56406, 0.568177, 0.572312, 0.576471, 0.580662, 0.584875, 0.58911,
1020 0.593373, 0.597653, 0.601965, 0.606301, 0.610663, 0.615051, 0.619465, 0.623907, 0.62837, 0.632863,
1021 0.637383, 0.641924, 0.646494, 0.651091, 0.655708, 0.660356, 0.665027, 0.669732, 0.674464, 0.679227,
1022 0.684016, 0.688827, 0.693664, 0.698532, 0.703428, 0.708353, 0.713307, 0.718283, 0.72329, 0.728322,
1023 0.733387, 0.738479, 0.743605, 0.748763, 0.753949, 0.759163, 0.764407, 0.769674, 0.774973, 0.780311,
1024 0.78567, 0.791057, 0.796476, 0.801922, 0.8074, 0.812919, 0.818466, 0.824044 };
1026 double m2 = 0.13957*0.13957;
1027 double smin = (0.13957*4)*(0.13957*4);
1029 int od = (sc - 0.312)/dh;
1030 double sc_m = 0.312 + od*dh;
1032 if(sc>=0.312 && sc<1){
1033 rhouse = ((sc-sc_m)/dh)*(rho[od+1]-rho[od])+rho[od];
1034 }
else if(sc<0.312 && sc>=smin){
1035 rhouse = ((sc - smin)/(0.312-smin))*rho[0];
1038 rhouse = sqrt(1-16*
m2/sc);
1049 double mpi = 0.13957;
1051 double m2 = 0.13957*0.13957;
1053 rhoijx = sqrt(1.0f - (4*
m2)/
s);
1056 rhoijy = sqrt((4*
m2)/
s - 1.0f);
1061 double m2 = 0.493677*0.493677;
1063 rhoijx = sqrt(1.0f - (4*
m2)/
s);
1066 rhoijy = sqrt((4*
m2)/
s - 1.0f);
1075 double m2 = 0.547862*0.547862;
1077 rhoijx = sqrt(1.0f - (4*
m2)/
s);
1080 rhoijy = sqrt((4*
m2)/
s - 1.0f);
1085 double m_1 = 0.547862;
1086 double m_2 = 0.95778;
1087 double mp2 = (m_1+m_2)*(m_1+m_2);
1088 double mm2 = (m_1-m_2)*(m_1-m_2);
1090 rhoijx = sqrt(1.0f - mp2/
s);
1093 rhoijy = sqrt(mp2/
s - 1.0f);
1111 double mpi = 0.13957;
1112 double m[5] = { 0.65100, 1.20360, 1.55817, 1.21000, 1.82206};
1114 double g1[5] = { 0.22889,-0.55377, 0.00000,-0.39899,-0.34639};
1115 double g2[5] = { 0.94128, 0.55095, 0.00000, 0.39065, 0.31503};
1116 double g3[5] = { 0.36856, 0.23888, 0.55639, 0.18340, 0.18681};
1117 double g4[5] = { 0.33650, 0.40907, 0.85679, 0.19906,-0.00984};
1118 double g5[5] = { 0.18171,-0.17558,-0.79658,-0.00355, 0.22358};
1120 double f1[5] = { 0.23399, 0.15044,-0.20545, 0.32825, 0.35412};
1124 double down[5] = { 0,0,0,0,0};
1125 double upreal[5] = { 0,0,0,0,0};
1126 double upimag[5] = { 0,0,0,0,0};
1128 for(
int k=0; k<5; k++){
1134 double dm2 = m[k]*m[k]-
s;
1135 if(fabs(dm2)<
eps && dm2<=0) dm2 = -
eps;
1136 if(fabs(dm2)<
eps && dm2>0) dm2 =
eps;
1137 upreal[k] = 1.0f/dm2;
1141 double tmp1x =
g1[i]*
g1[j]*upreal[0] + g2[i]*g2[j]*upreal[1] + g3[i]*g3[j]*upreal[2] + g4[i]*g4[j]*upreal[3] + g5[i]*g5[j]*upreal[4];
1142 double tmp1y =
g1[i]*
g1[j]*upimag[0] + g2[i]*g2[j]*upimag[1] + g3[i]*g3[j]*upimag[2] + g4[i]*g4[j]*upimag[3] + g5[i]*g5[j]*upimag[4];
1146 tmp2 =
f1[j]*(1+3.92637)/(
s+3.92637);
1149 tmp2 =
f1[i]*(1+3.92637)/(
s+3.92637);
1151 double tmp3 = (
s-0.5*
mpi*
mpi)*(1+0.15)/(
s+0.15);
1153 Kijx = (tmp1x+tmp2)*tmp3;
1154 Kijy = (tmp1y)*tmp3;
1177complex<double> EvtD0Topippim2pi0::FMTX(
double Kijx,
double Kijy,
double rhojjx,
double rhojjy,
int i,
int j){
1182 double tmpx = rhojjx*Kijx - rhojjy*Kijy;
1183 double tmpy = rhojjx*Kijy + rhojjy*Kijx;
1185 Fijx = IMTX(i,j).real() + tmpy;
1193double EvtD0Topippim2pi0::FINVMTX(
double s,
double *FINVx,
double *FINVy){
1195 int P[5] = { 0,1,2,3,4};
1210 for(
int k=0; k<5; k++){
1211 double rhokkx = rhoMTX(k,k,
s).real();
1212 double rhokky = rhoMTX(k,k,
s).imag();
1215 for(
int l=k; l<5; l++){
1216 double Kklx = KMTX(k,l,
s).real();
1217 double Kkly = KMTX(k,l,
s).imag();
1220 Lx[l][k] = Lx[k][l];
1221 Ly[l][k] = Ly[k][l];
1225 for(
int k=0; k<5; k++){
1226 for(
int l=0; l<5; l++){
1227 double Fklx = FMTX(Lx[k][l],Ly[k][l],Ux[l][l],Uy[l][l],k,l).real();
1228 double Fkly = FMTX(Lx[k][l],Ly[k][l],Ux[l][l],Uy[l][l],k,l).imag();
1234 for(
int k=0; k<5; k++){
1235 double tmprM = (Fx[k][k]*Fx[k][k]+Fy[k][k]*Fy[k][k]);
1237 for(
int l=k; l<5; l++){
1238 double tmprF = (Fx[l][k]*Fx[l][k]+Fy[l][k]*Fy[l][k]);
1249 for(
int l=0; l<5; l++){
1251 double tmpFx = Fx[k][l];
1252 double tmpFy = Fy[k][l];
1254 Fx[k][l] = Fx[tmpID][l];
1255 Fy[k][l] = Fy[tmpID][l];
1257 Fx[tmpID][l] = tmpFx;
1258 Fy[tmpID][l] = tmpFy;
1262 for(
int l=k+1; l<5; l++){
1263 double rFkk = Fx[k][k]*Fx[k][k] + Fy[k][k]*Fy[k][k];
1264 double Fxlk = Fx[l][k];
1265 double Fylk = Fy[l][k];
1266 double Fxkk = Fx[k][k];
1267 double Fykk = Fy[k][k];
1268 Fx[l][k] = (Fxlk*Fxkk + Fylk*Fykk)/rFkk;
1269 Fy[l][k] = (Fylk*Fxkk - Fxlk*Fykk)/rFkk;
1270 for(
int m=k+1; m<5; m++){
1271 Fx[l][m] = Fx[l][m] - (Fx[l][k]*Fx[k][m] - Fy[l][k]*Fy[k][m]);
1272 Fy[l][m] = Fy[l][m] - (Fx[l][k]*Fy[k][m] + Fy[l][k]*Fx[k][m]);
1277 for(
int k=0; k<5; k++){
1278 for(
int l=0; l<5 ;l++){
1282 Ux[k][k] = Fx[k][k];
1283 Uy[k][k] = Fy[k][k];
1286 Lx[k][l] = Fx[k][l];
1287 Ly[k][l] = Fy[k][l];
1292 Ux[k][l] = Fx[k][l];
1293 Uy[k][l] = Fy[k][l];
1301 for(
int k=0; k<5; k++){
1306 double rUkk = Ux[k][k]*Ux[k][k] + Uy[k][k]*Uy[k][k];
1307 UIx[k][k] = Ux[k][k]/rUkk;
1308 UIy[k][k] = -1.0f * Uy[k][k]/rUkk ;
1310 for(
int l=(k+1); l<5; l++){
1317 for(
int l=(k-1); l>=0; l--){
1322 for(
int m=l+1; m<=k; m++){
1324 double sx_tmp = sx + Ux[l][m]*UIx[m][k] - Uy[l][m]*UIy[m][k];
1325 c_sx = (sx_tmp - sx) - (Ux[l][m]*UIx[m][k] - Uy[l][m]*UIy[m][k]);
1329 double sy_tmp = sy + Ux[l][m]*UIy[m][k] + Uy[l][m]*UIx[m][k];
1330 c_sy = (sy_tmp - sy) - (Ux[l][m]*UIy[m][k] + Uy[l][m]*UIx[m][k]);
1333 UIx[l][k] = -1.0f * (UIx[l][l]*sx - UIy[l][l]*sy);
1334 UIy[l][k] = -1.0f * (UIy[l][l]*sx + UIx[l][l]*sy);
1337 for(
int l=k+1; l<5; l++){
1342 for(
int m=k; m<l; m++){
1344 double sx_tmp = sx + Lx[l][m]*LIx[m][k] - Ly[l][m]*LIy[m][k];
1345 c_sx = (sx_tmp - sx) - (Lx[l][m]*LIx[m][k] - Ly[l][m]*LIy[m][k]);
1349 double sy_tmp = sy + Lx[l][m]*LIy[m][k] + Ly[l][m]*LIx[m][k];
1350 c_sy = (sy_tmp - sy) - (Lx[l][m]*LIy[m][k] + Ly[l][m]*LIx[m][k]);
1353 LIx[l][k] = -1.0f * sx;
1354 LIy[l][k] = -1.0f * sy;
1358 for(
int m=0; m<5; m++){
1363 for(
int k=0; k<5; k++){
1364 for(
int l=0; l<5; l++){
1366 if(
P[l] == m) Plm = 1;
1368 resX = resX - c_resX;
1369 double resX_tmp = resX + (UIx[0][k]*LIx[k][l] - UIy[0][k]*LIy[k][l])*Plm;
1370 c_resX = (resX_tmp - resX) - ((UIx[0][k]*LIx[k][l] - UIy[0][k]*LIy[k][l])*Plm);
1373 resY = resY - c_resY;
1374 double resY_tmp = resY + (UIx[0][k]*LIy[k][l] + UIy[0][k]*LIx[k][l])*Plm;
1375 c_resY = (resY_tmp - resY) - ((UIx[0][k]*LIy[k][l] + UIy[0][k]*LIx[k][l])*Plm);
1390 double m[5] = { 0.65100, 1.20360, 1.55817, 1.21000, 1.82206};
1398 double dm2 = m[
ID]*m[
ID]-
s;
1400 if(fabs(dm2)<
eps && dm2<=0) dm2 = -
eps;
1401 if(fabs(dm2)<
eps && dm2>0) dm2 =
eps;
1410complex<double> EvtD0Topippim2pi0::Fvector(
double sa,
double s0,
int l){
1415 double FINVx[5] = {0,0,0,0,0};
1416 double FINVy[5] = {0,0,0,0,0};
1418 double tmpFLAG = FINVMTX(sa,FINVx,FINVy);
1421 double g[5][5] = {{ 0.22889,-0.55377, 0.00000,-0.39899,-0.34639},
1422 { 0.94128, 0.55095, 0.00000, 0.39065, 0.31503},
1423 { 0.36856, 0.23888, 0.55639, 0.18340, 0.18681},
1424 { 0.33650, 0.40907, 0.85679, 0.19906,-0.00984},
1425 { 0.18171,-0.17558,-0.79658,-0.00355, 0.22358}};
1430 double Plx = PVTR(l,sa).real();
1431 double Ply = PVTR(l,sa).imag();
1432 for(
int j=0; j<5; j++){
1433 resx = resx - c_resx;
1434 double resx_tmp = resx + (FINVx[j]*g[l][j]*Plx - FINVy[j]*g[l][j]*Ply);
1435 c_resx = (resx_tmp - resx) - (FINVx[j]*g[l][j]*Plx - FINVy[j]*g[l][j]*Ply);
1438 resy = resy - c_resy;
1439 double resy_tmp = resy + (FINVx[j]*g[l][j]*Ply + FINVy[j]*g[l][j]*Plx);
1440 c_resy = (resy_tmp - resy) - (FINVx[j]*g[l][j]*Ply + FINVy[j]*g[l][j]*Plx);
1449 if(fabs(ds)<
eps && ds<=0) ds = -
eps;
1450 if(fabs(ds)<
eps && ds>0) ds =
eps;
1451 double tmp = (1-s0)/ds;
1452 outputx = FINVx[idx]*tmp;
1453 outputy = FINVy[idx]*tmp;
1461 return Amp(m_Pip, m_Pim, m_Pi01, m_Pi02);
1465 vector<double> cpPip; cpPip.clear();
1466 vector<double> cpPim; cpPim.clear();
1467 vector<double> cpPi01; cpPi01.clear();
1468 vector<double> cpPi02; cpPi02.clear();
1470 cpPip.push_back(-m_Pim[0]); cpPim.push_back(-m_Pip[0]); cpPi01.push_back(-m_Pi01[0]); cpPi02.push_back(-m_Pi02[0]);
1471 cpPip.push_back(-m_Pim[1]); cpPim.push_back(-m_Pip[1]); cpPi01.push_back(-m_Pi01[1]); cpPi02.push_back(-m_Pi02[1]);
1472 cpPip.push_back(-m_Pim[2]); cpPim.push_back(-m_Pip[2]); cpPi01.push_back(-m_Pi01[2]); cpPi02.push_back(-m_Pi02[2]);
1473 cpPip.push_back( m_Pim[3]); cpPim.push_back( m_Pip[3]); cpPi01.push_back( m_Pi01[3]); cpPi02.push_back( m_Pi02[3]);
1475 return Amp(cpPip, cpPim, cpPi01, cpPi02);
1478complex<double> EvtD0Topippim2pi0::Amp(vector<double> Pip, vector<double> Pim, vector<double> Pi01, vector<double> Pi02)
1481 vector<double> PipPim; PipPim.clear();
1482 vector<double> PipPi01; PipPi01.clear();
1483 vector<double> PipPi02; PipPi02.clear();
1484 vector<double> PimPi01; PimPi01.clear();
1485 vector<double> PimPi02; PimPi02.clear();
1486 vector<double> Pi01Pi02; Pi01Pi02.clear();
1488 PipPim = sum_tensor(Pip, Pim);
1489 PipPi01 = sum_tensor(Pip, Pi01);
1490 PipPi02 = sum_tensor(Pip, Pi02);
1491 PimPi01 = sum_tensor(Pim, Pi01);
1492 PimPi02 = sum_tensor(Pim, Pi02);
1493 Pi01Pi02 = sum_tensor(Pi01, Pi02);
1495 vector<double> PipPimPi01; PipPimPi01.clear();
1496 vector<double> PipPimPi02; PipPimPi02.clear();
1497 vector<double> PipPi01Pi02; PipPi01Pi02.clear();
1498 vector<double> PimPi01Pi02; PimPi01Pi02.clear();
1500 PipPimPi01 = sum_tensor(PipPim, Pi01);
1501 PipPimPi02 = sum_tensor(PipPim, Pi02);
1502 PipPi01Pi02 = sum_tensor(PipPi01, Pi02);
1503 PimPi01Pi02 = sum_tensor(PimPi01, Pi02);
1505 vector<double> D0; D0.clear();
1506 D0 = sum_tensor(PipPimPi01, Pi02);
1508 double M2_PipPim = contract_11_0(PipPim, PipPim);
1509 double M2_PipPi01 = contract_11_0(PipPi01, PipPi01);
1510 double M2_PipPi02 = contract_11_0(PipPi02, PipPi02);
1511 double M2_PimPi01 = contract_11_0(PimPi01, PimPi01);
1512 double M2_PimPi02 = contract_11_0(PimPi02, PimPi02);
1513 double M2_Pi01Pi02 = contract_11_0(Pi01Pi02, Pi01Pi02);
1515 double M2_PipPimPi01 = contract_11_0(PipPimPi01, PipPimPi01);
1516 double M2_PipPimPi02 = contract_11_0(PipPimPi02, PipPimPi02);
1517 double M2_PipPi01Pi02 = contract_11_0(PipPi01Pi02, PipPi01Pi02);
1518 double M2_PimPi01Pi02 = contract_11_0(PimPi01Pi02, PimPi01Pi02);
1519 double M2_D0 = contract_11_0(D0, D0);
1521 complex<double> GS_rho770_pm = GS(M2_PipPim, m0_rho7700, w0_rho7700, m2_Pi, m2_Pi, rRes, 1);
1522 complex<double> GS_rho770_p1 = GS(M2_PipPi01, m0_rho770p, w0_rho770p, m2_Pi, m2_Pi0, rRes, 1);
1523 complex<double> GS_rho770_p2 = GS(M2_PipPi02, m0_rho770p, w0_rho770p, m2_Pi, m2_Pi0, rRes, 1);
1524 complex<double> GS_rho770_m1 = GS(M2_PimPi01, m0_rho770p, w0_rho770p, m2_Pi, m2_Pi0, rRes, 1);
1525 complex<double> GS_rho770_m2 = GS(M2_PimPi02, m0_rho770p, w0_rho770p, m2_Pi, m2_Pi0, rRes, 1);
1527 complex<double> RBW_f21270_pm = RBW(M2_PipPim, m0_f21270, w0_f21270, m2_Pi, m2_Pi, rRes, 2);
1528 complex<double> RBW_f21270_00 = RBW(M2_Pi01Pi02, m0_f21270, w0_f21270, m2_Pi0, m2_Pi0, rRes, 2);
1542 complex<double> RBW_a11260_p = RBWa1260(M2_PipPi01Pi02, m0_a11260, g1_a11260, g2_a11260);
1543 complex<double> RBW_a11260_m = RBWa1260(M2_PimPi01Pi02, m0_a11260, g1_a11260, g2_a11260);
1544 complex<double> RBW_a11260_01 = RBWa1260(M2_PipPimPi01, m0_a11260, g1_a11260, g2_a11260);
1545 complex<double> RBW_a11260_02 = RBWa1260(M2_PipPimPi02, m0_a11260, g1_a11260, g2_a11260);
1547 complex<double> RBW_a11420_p = RBW(M2_PipPi01Pi02, m0_a11420, w0_a11420,-1,-1,-1,-1);
1548 complex<double> RBW_a11420_m = RBW(M2_PimPi01Pi02, m0_a11420, w0_a11420,-1,-1,-1,-1);
1549 complex<double> RBW_a11420_01 = RBW(M2_PipPimPi01, m0_a11420, w0_a11420,-1,-1,-1,-1);
1550 complex<double> RBW_a11420_02 = RBW(M2_PipPimPi02, m0_a11420, w0_a11420,-1,-1,-1,-1);
1552 complex<double> RBW_omega_01 = RBW(M2_PipPimPi01, m0_omega, w0_omega,-1,-1,-1,-1);
1553 complex<double> RBW_omega_02 = RBW(M2_PipPimPi02, m0_omega, w0_omega,-1,-1,-1,-1);
1555 complex<double> RBW_phi_01 = RBW(M2_PipPimPi01, m0_phi, w0_phi,-1,-1,-1,-1);
1556 complex<double> RBW_phi_02 = RBW(M2_PipPimPi02, m0_phi, w0_phi,-1,-1,-1,-1);
1558 complex<double> RBW_a21320_p = RBW(M2_PipPi01Pi02, m0_a21320, w0_a21320,-1,-1,-1,-1);
1559 complex<double> RBW_a21320_m = RBW(M2_PimPi01Pi02, m0_a21320, w0_a21320,-1,-1,-1,-1);
1561 complex<double> RBW_pi1300_p = RBWpi1300(M2_PipPi01Pi02, m0_pi1300, w0_pi1300);
1562 complex<double> RBW_pi1300_m = RBWpi1300(M2_PimPi01Pi02, m0_pi1300, w0_pi1300);
1563 complex<double> RBW_pi1300_01 = RBWpi1300(M2_PipPimPi01, m0_pi1300, w0_pi1300);
1564 complex<double> RBW_pi1300_02 = RBWpi1300(M2_PipPimPi02, m0_pi1300, w0_pi1300);
1566 complex<double> RBW_h11170_01 = RBW(M2_PipPimPi01, m0_h11170, w0_h11170,-1,-1,-1,-1);
1567 complex<double> RBW_h11170_02 = RBW(M2_PipPimPi02, m0_h11170, w0_h11170,-1,-1,-1,-1);
1569 complex<double> RBW_pi21670_01 = RBW(M2_PipPimPi01, m0_pi21670, w0_pi21670,-1,-1,-1,-1);
1570 complex<double> RBW_pi21670_02 = RBW(M2_PipPimPi02, m0_pi21670, w0_pi21670,-1,-1,-1,-1);
1573 vector<double> Proj1_3p; Proj1_3p.clear();
1574 vector<double> Proj1_3m; Proj1_3m.clear();
1575 vector<double> Proj1_3z1; Proj1_3z1.clear();
1576 vector<double> Proj1_3z2; Proj1_3z2.clear();
1578 Proj1_3p = ProjectionTensors(PipPi01Pi02,1);
1579 Proj1_3m = ProjectionTensors(PimPi01Pi02,1);
1580 Proj1_3z1 = ProjectionTensors(PipPimPi01,1);
1581 Proj1_3z2 = ProjectionTensors(PipPimPi02,1);
1583 vector<double> Proj2_3p; Proj2_3p.clear();
1584 vector<double> Proj2_3m; Proj2_3m.clear();
1585 vector<double> Proj2_3z1; Proj2_3z1.clear();
1586 vector<double> Proj2_3z2; Proj2_3z2.clear();
1588 Proj2_3p = ProjectionTensors(PipPi01Pi02,2);
1589 Proj2_3m = ProjectionTensors(PimPi01Pi02,2);
1590 Proj2_3z1 = ProjectionTensors(PipPimPi01,2);
1591 Proj2_3z2 = ProjectionTensors(PipPimPi02,2);
1594 vector<double> T1_PipPim; T1_PipPim.clear();
1595 vector<double> T1_PipPi01; T1_PipPi01.clear();
1596 vector<double> T1_PipPi02; T1_PipPi02.clear();
1597 vector<double> T1_PimPi01; T1_PimPi01.clear();
1598 vector<double> T1_PimPi02; T1_PimPi02.clear();
1599 vector<double> T1_Pi01Pi02; T1_Pi01Pi02.clear();
1601 T1_PipPim = OrbitalTensors(PipPim, Pip, Pim, rRes, 1);
1602 T1_PipPi01 = OrbitalTensors(PipPi01, Pip, Pi01, rRes, 1);
1603 T1_PipPi02 = OrbitalTensors(PipPi02, Pip, Pi02, rRes, 1);
1604 T1_PimPi01 = OrbitalTensors(PimPi01, Pim, Pi01, rRes, 1);
1605 T1_PimPi02 = OrbitalTensors(PimPi02, Pim, Pi02, rRes, 1);
1606 T1_Pi01Pi02 = OrbitalTensors(Pi01Pi02, Pi01, Pi02, rRes, 1);
1608 vector<double> T2_PipPim; T2_PipPim.clear();
1609 vector<double> T2_Pi01Pi02; T2_Pi01Pi02.clear();
1611 T2_PipPim = OrbitalTensors(PipPim, Pip, Pim, rRes, 2);
1612 T2_Pi01Pi02 = OrbitalTensors(Pi01Pi02, Pi01, Pi02, rRes, 2);
1615 vector<double> T1_PipPimPi01; T1_PipPimPi01.clear();
1616 vector<double> T1_PipPimPi02; T1_PipPimPi02.clear();
1617 vector<double> T1_PipPi01Pi02; T1_PipPi01Pi02.clear();
1618 vector<double> T1_PipPi02Pi01; T1_PipPi02Pi01.clear();
1619 vector<double> T1_PimPi01Pi02; T1_PimPi01Pi02.clear();
1620 vector<double> T1_PimPi02Pi01; T1_PimPi02Pi01.clear();
1621 vector<double> T1_PipPi01Pim; T1_PipPi01Pim.clear();
1622 vector<double> T1_PipPi02Pim; T1_PipPi02Pim.clear();
1623 vector<double> T1_PimPi01Pip; T1_PimPi01Pip.clear();
1624 vector<double> T1_PimPi02Pip; T1_PimPi02Pip.clear();
1625 vector<double> T1_Pi01Pi02Pip; T1_Pi01Pi02Pip.clear();
1626 vector<double> T1_Pi01Pi02Pim; T1_Pi01Pi02Pim.clear();
1628 T1_PipPimPi01 = OrbitalTensors(PipPimPi01, PipPim, Pi01, rRes, 1);
1629 T1_PipPimPi02 = OrbitalTensors(PipPimPi02, PipPim, Pi02, rRes, 1);
1630 T1_PipPi01Pi02 = OrbitalTensors(PipPi01Pi02, PipPi01, Pi02, rRes, 1);
1631 T1_PipPi02Pi01 = OrbitalTensors(PipPi01Pi02, PipPi02, Pi01, rRes, 1);
1632 T1_PimPi01Pi02 = OrbitalTensors(PimPi01Pi02, PimPi01, Pi02, rRes, 1);
1633 T1_PimPi02Pi01 = OrbitalTensors(PimPi01Pi02, PimPi02, Pi01, rRes, 1);
1634 T1_PipPi01Pim = OrbitalTensors(PipPimPi01, PipPi01, Pim, rRes, 1);
1635 T1_PipPi02Pim = OrbitalTensors(PipPimPi02, PipPi02, Pim, rRes, 1);
1636 T1_PimPi01Pip = OrbitalTensors(PipPimPi01, PimPi01, Pip, rRes, 1);
1637 T1_PimPi02Pip = OrbitalTensors(PipPimPi02, PimPi02, Pip, rRes, 1);
1638 T1_Pi01Pi02Pip = OrbitalTensors(PipPi01Pi02, Pi01Pi02, Pip, rRes, 1);
1639 T1_Pi01Pi02Pim = OrbitalTensors(PimPi01Pi02, Pi01Pi02, Pim, rRes, 1);
1641 vector<double> T2_PipPimPi01; T2_PipPimPi01.clear();
1642 vector<double> T2_PipPimPi02; T2_PipPimPi02.clear();
1643 vector<double> T2_PipPi01Pi02; T2_PipPi01Pi02.clear();
1644 vector<double> T2_PipPi02Pi01; T2_PipPi02Pi01.clear();
1645 vector<double> T2_PimPi01Pi02; T2_PimPi01Pi02.clear();
1646 vector<double> T2_PimPi02Pi01; T2_PimPi02Pi01.clear();
1647 vector<double> T2_PipPi01Pim; T2_PipPi01Pim.clear();
1648 vector<double> T2_PipPi02Pim; T2_PipPi02Pim.clear();
1649 vector<double> T2_PimPi01Pip; T2_PimPi01Pip.clear();
1650 vector<double> T2_PimPi02Pip; T2_PimPi02Pip.clear();
1651 vector<double> T2_Pi01Pi02Pip; T2_Pi01Pi02Pip.clear();
1652 vector<double> T2_Pi01Pi02Pim; T2_Pi01Pi02Pim.clear();
1654 T2_PipPimPi01 = OrbitalTensors(PipPimPi01, PipPim, Pi01, rRes, 2);
1655 T2_PipPimPi02 = OrbitalTensors(PipPimPi02, PipPim, Pi02, rRes, 2);
1656 T2_PipPi01Pi02 = OrbitalTensors(PipPi01Pi02, PipPi01, Pi02, rRes, 2);
1657 T2_PipPi02Pi01 = OrbitalTensors(PipPi01Pi02, PipPi02, Pi01, rRes, 2);
1658 T2_PimPi01Pi02 = OrbitalTensors(PimPi01Pi02, PimPi01, Pi02, rRes, 2);
1659 T2_PimPi02Pi01 = OrbitalTensors(PimPi01Pi02, PimPi02, Pi01, rRes, 2);
1660 T2_PipPi01Pim = OrbitalTensors(PipPimPi01, PipPi01, Pim, rRes, 2);
1661 T2_PipPi02Pim = OrbitalTensors(PipPimPi02, PipPi02, Pim, rRes, 2);
1662 T2_PimPi01Pip = OrbitalTensors(PipPimPi01, PimPi01, Pip, rRes, 2);
1663 T2_PimPi02Pip = OrbitalTensors(PipPimPi02, PimPi02, Pip, rRes, 2);
1664 T2_Pi01Pi02Pip = OrbitalTensors(PipPi01Pi02, Pi01Pi02, Pip, rRes, 2);
1665 T2_Pi01Pi02Pim = OrbitalTensors(PimPi01Pi02, Pi01Pi02, Pim, rRes, 2);
1668 vector<double> T1_2pm12; T1_2pm12.clear();
1669 vector<double> T1_2p1m2; T1_2p1m2.clear();
1670 vector<double> T1_2p2m1; T1_2p2m1.clear();
1672 T1_2pm12 = OrbitalTensors(D0, PipPim, Pi01Pi02, rD, 1);
1673 T1_2p1m2 = OrbitalTensors(D0, PipPi01, PimPi02, rD, 1);
1674 T1_2p2m1 = OrbitalTensors(D0, PipPi02, PimPi01, rD, 1);
1676 vector<double> T2_2pm12; T2_2pm12.clear();
1677 vector<double> T2_2p1m2; T2_2p1m2.clear();
1678 vector<double> T2_2p2m1; T2_2p2m1.clear();
1680 T2_2pm12 = OrbitalTensors(D0, PipPim, Pi01Pi02, rD, 2);
1681 T2_2p1m2 = OrbitalTensors(D0, PipPi01, PimPi02, rD, 2);
1682 T2_2p2m1 = OrbitalTensors(D0, PipPi02, PimPi01, rD, 2);
1685 vector<double> T1_3pm; T1_3pm.clear();
1686 vector<double> T1_3mp; T1_3mp.clear();
1687 vector<double> T1_3z12; T1_3z12.clear();
1688 vector<double> T1_3z21; T1_3z21.clear();
1690 T1_3pm = OrbitalTensors(D0, PipPi01Pi02, Pim, rD, 1);
1691 T1_3mp = OrbitalTensors(D0, PimPi01Pi02, Pip, rD, 1);
1692 T1_3z12 = OrbitalTensors(D0, PipPimPi01, Pi02, rD, 1);
1693 T1_3z21 = OrbitalTensors(D0, PipPimPi02, Pi01, rD, 1);
1695 vector<double> T2_3pm; T2_3pm.clear();
1696 vector<double> T2_3mp; T2_3mp.clear();
1697 vector<double> T2_3z12; T2_3z12.clear();
1698 vector<double> T2_3z21; T2_3z21.clear();
1700 T2_3pm = OrbitalTensors(D0, PipPi01Pi02, Pim, rD, 2);
1701 T2_3mp = OrbitalTensors(D0, PimPi01Pi02, Pip, rD, 2);
1702 T2_3z12 = OrbitalTensors(D0, PipPimPi01, Pi02, rD, 2);
1703 T2_3z21 = OrbitalTensors(D0, PipPimPi02, Pi01, rD, 2);
1708 double SF_Ap_S_Vp1P = contract_11_0(contract_21_1(Proj1_3p, T1_PipPi01), T1_3pm);
1709 double SF_Ap_S_Vp2P = contract_11_0(contract_21_1(Proj1_3p, T1_PipPi02), T1_3pm);
1711 amplitude += fitpara[0]*(SF_Ap_S_Vp1P*RBW_a11260_p*GS_rho770_p1 + SF_Ap_S_Vp2P*RBW_a11260_p*GS_rho770_p2);
1714 double SF_Ap_D_Vp1P = contract_11_0(contract_21_1(T2_PipPi01Pi02, T1_PipPi01), T1_3pm);
1715 double SF_Ap_D_Vp2P = contract_11_0(contract_21_1(T2_PipPi02Pi01, T1_PipPi02), T1_3pm);
1719 amplitude += fitpara[1]*(SF_Ap_D_Vp1P*RBW_a11260_p*GS_rho770_p1 + SF_Ap_D_Vp2P*RBW_a11260_p*GS_rho770_p2);
1722 double SF_Ap_P_TP = contract_11_0(contract_21_1(contract_42_2(Proj2_3p, T2_Pi01Pi02), T1_Pi01Pi02Pip), T1_3pm);
1724 amplitude += fitpara[2]*(SF_Ap_P_TP*RBW_a11260_p*RBW_f21270_00);
1727 double SF_Ap_P_SP = contract_11_0(T1_3pm, T1_Pi01Pi02Pip);
1729 amplitude += fitpara[3]*(SF_Ap_P_SP*RBW_a11260_p*PiPiS_00_0);
1730 amplitude += fitpara[4]*(SF_Ap_P_SP*RBW_a11260_p*PiPiS_00_1);
1731 amplitude += fitpara[5]*(SF_Ap_P_SP*RBW_a11260_p*PiPiS_00_5);
1734 double SF_Am_S_Vm1P = contract_11_0(contract_21_1(Proj1_3m, T1_PimPi01), T1_3mp);
1735 double SF_Am_S_Vm2P = contract_11_0(contract_21_1(Proj1_3m, T1_PimPi02), T1_3mp);
1737 amplitude += fitpara[6]*fitpara[0]*(SF_Am_S_Vm1P*RBW_a11260_m*GS_rho770_m1 + SF_Am_S_Vm2P*RBW_a11260_m*GS_rho770_m2);
1740 double SF_Am_D_Vm1P = contract_11_0(contract_21_1(T2_PimPi01Pi02, T1_PimPi01), T1_3mp);
1741 double SF_Am_D_Vm2P = contract_11_0(contract_21_1(T2_PimPi02Pi01, T1_PimPi02), T1_3mp);
1743 amplitude += fitpara[6]*fitpara[1]*(SF_Am_D_Vm1P*RBW_a11260_m*GS_rho770_m1 + SF_Am_D_Vm2P*RBW_a11260_m*GS_rho770_m2);
1746 double SF_Am_P_TP = contract_11_0(contract_21_1(contract_42_2(Proj2_3m, T2_Pi01Pi02), T1_Pi01Pi02Pim), T1_3mp);
1748 amplitude += fitpara[6]*fitpara[2]*(SF_Am_P_TP*RBW_a11260_m*RBW_f21270_00);
1751 double SF_Am_P_SP = contract_11_0(T1_3mp, T1_Pi01Pi02Pim);
1753 amplitude += fitpara[6]*fitpara[3]*(SF_Am_P_SP*RBW_a11260_m*PiPiS_00_0);
1754 amplitude += fitpara[6]*fitpara[4]*(SF_Am_P_SP*RBW_a11260_m*PiPiS_00_1);
1755 amplitude += fitpara[6]*fitpara[5]*(SF_Am_P_SP*RBW_a11260_m*PiPiS_00_5);
1758 double SF_A01_S_Vp1P = contract_11_0(contract_21_1(Proj1_3z1, T1_PipPi01), T1_3z12);
1759 double SF_A02_S_Vp2P = contract_11_0(contract_21_1(Proj1_3z2, T1_PipPi02), T1_3z21);
1760 double SF_A01_S_Vm1P = contract_11_0(contract_21_1(Proj1_3z1, T1_PimPi01), T1_3z12);
1761 double SF_A02_S_Vm2P = contract_11_0(contract_21_1(Proj1_3z2, T1_PimPi02), T1_3z21);
1762 double SF_A01_S_VzP = contract_11_0(contract_21_1(Proj1_3z1, T1_PipPim), T1_3z12);
1763 double SF_A02_S_VzP = contract_11_0(contract_21_1(Proj1_3z2, T1_PipPim), T1_3z21);
1765 amplitude += fitpara[7]*fitpara[0]*(SF_A01_S_Vp1P*RBW_a11260_01*GS_rho770_p1 + SF_A02_S_Vp2P*RBW_a11260_02*GS_rho770_p2 + SF_A01_S_Vm1P*RBW_a11260_01*GS_rho770_m1 + SF_A02_S_Vm2P*RBW_a11260_02*GS_rho770_m2);
1767 double SF_A01_D_Vp1P = contract_11_0(contract_21_1(T2_PipPi01Pim, T1_PipPi01), T1_3z12);
1768 double SF_A02_D_Vp2P = contract_11_0(contract_21_1(T2_PipPi02Pim, T1_PipPi02), T1_3z21);
1769 double SF_A01_D_Vm1P = contract_11_0(contract_21_1(T2_PimPi01Pip, T1_PimPi01), T1_3z12);
1770 double SF_A02_D_Vm2P = contract_11_0(contract_21_1(T2_PimPi02Pip, T1_PimPi02), T1_3z21);
1772 amplitude += fitpara[7]*fitpara[1]*(SF_A01_D_Vp1P*RBW_a11260_01*GS_rho770_p1 + SF_A02_D_Vp2P*RBW_a11260_02*GS_rho770_p2 + SF_A01_D_Vm1P*RBW_a11260_01*GS_rho770_m1 + SF_A02_D_Vm2P*RBW_a11260_02*GS_rho770_m2);
1774 double SF_A01_P_TP = contract_11_0(contract_21_1(contract_42_2(Proj2_3z1,T2_PipPim), T1_PipPimPi01), T1_3z12);
1775 double SF_A02_P_TP = contract_11_0(contract_21_1(contract_42_2(Proj2_3z2,T2_PipPim), T1_PipPimPi02), T1_3z21);
1777 amplitude += fitpara[7]*fitpara[2]*(-1.0)*(SF_A01_P_TP*RBW_a11260_01*RBW_f21270_pm + SF_A02_P_TP*RBW_a11260_02*RBW_f21270_pm);
1779 double SF_A01_P_SP = contract_11_0(T1_3z12, T1_PipPimPi01);
1780 double SF_A02_P_SP = contract_11_0(T1_3z21, T1_PipPimPi02);
1782 amplitude += fitpara[7]*fitpara[3]*(-1.0)*(SF_A01_P_SP*RBW_a11260_01*PiPiS_pm_0 + SF_A02_P_SP*RBW_a11260_02*PiPiS_pm_0);
1783 amplitude += fitpara[7]*fitpara[4]*(-1.0)*(SF_A01_P_SP*RBW_a11260_01*PiPiS_pm_1 + SF_A02_P_SP*RBW_a11260_02*PiPiS_pm_1);
1784 amplitude += fitpara[7]*fitpara[5]*(-1.0)*(SF_A01_P_SP*RBW_a11260_01*PiPiS_pm_5 + SF_A02_P_SP*RBW_a11260_02*PiPiS_pm_5);
1791 amplitude += fitpara[8]*(SF_Ap_P_SP*RBW_a11420_p*PiPiS_00_5);
1792 amplitude += fitpara[9]*(SF_Ap_P_SP*RBW_a11420_p*PiPiS_00_6);
1795 double SF_Tp_D_Vp1P = contract_22_0(contract_22_2(contract_31_2(contract_41_3(epsilon_uvmn, contract_21_1(Proj1_3p, T1_PipPi01)), PipPi01Pi02), contract_42_2(Proj2_3p, T2_3pm)), T2_PipPi01Pi02);
1796 double SF_Tp_D_Vp2P = contract_22_0(contract_22_2(contract_31_2(contract_41_3(epsilon_uvmn, contract_21_1(Proj1_3p, T1_PipPi02)), PipPi01Pi02), contract_42_2(Proj2_3p, T2_3pm)), T2_PipPi02Pi01);
1798 amplitude += fitpara[10]*(SF_Tp_D_Vp1P*GS_rho770_p1*RBW_a21320_p + SF_Tp_D_Vp2P*GS_rho770_p2*RBW_a21320_p);
1801 double SF_Tm_D_Vm1P = contract_22_0(contract_22_2(contract_31_2(contract_41_3(epsilon_uvmn, contract_21_1(Proj1_3m, T1_PimPi01)), PimPi01Pi02), contract_42_2(Proj2_3m, T2_3mp)), T2_PimPi01Pi02);
1802 double SF_Tm_D_Vm2P = contract_22_0(contract_22_2(contract_31_2(contract_41_3(epsilon_uvmn, contract_21_1(Proj1_3m, T1_PimPi02)), PimPi01Pi02), contract_42_2(Proj2_3m, T2_3mp)), T2_PimPi02Pi01);
1803 amplitude += fitpara[11]*(SF_Tm_D_Vm1P*GS_rho770_m1*RBW_a21320_m + SF_Tm_D_Vm2P*GS_rho770_m2*RBW_a21320_m);
1806 amplitude += fitpara[12]*(SF_A01_S_Vp1P*RBW_h11170_01*GS_rho770_p1 + SF_A02_S_Vp2P*RBW_h11170_02*GS_rho770_p2 - SF_A01_S_Vm1P*RBW_h11170_01*GS_rho770_m1 - SF_A02_S_Vm2P*RBW_h11170_02*GS_rho770_m2 - SF_A01_S_VzP*RBW_h11170_01*GS_rho770_pm - SF_A02_S_VzP*RBW_h11170_02*GS_rho770_pm);
1809 double SF_Pm_P_Vm1P = contract_11_0(T1_PimPi01,T1_PimPi01Pi02);
1810 double SF_Pm_P_Vm2P = contract_11_0(T1_PimPi02,T1_PimPi02Pi01);
1812 amplitude += fitpara[13]*(SF_Pm_P_Vm1P*GS_rho770_m1*RBW_pi1300_m + SF_Pm_P_Vm2P*GS_rho770_m2*RBW_pi1300_m);
1819 amplitude += fitpara[14]*fitpara[13]*(RBW_pi1300_m*PiPiS_00_0);
1821 amplitude += fitpara[15]*fitpara[13]*(RBW_pi1300_m*PiPiS_00_6);
1824 double SF_Pp_P_Vp1P = contract_11_0(T1_PipPi01,T1_PipPi01Pi02);
1825 double SF_Pp_P_Vp2P = contract_11_0(T1_PipPi02,T1_PipPi02Pi01);
1827 amplitude += fitpara[16]*(SF_Pp_P_Vp1P*GS_rho770_p1*RBW_pi1300_p + SF_Pp_P_Vp2P*GS_rho770_p2*RBW_pi1300_p);
1834 amplitude += fitpara[14]*fitpara[16]*(RBW_pi1300_p*PiPiS_00_0);
1836 amplitude += fitpara[15]*fitpara[16]*(RBW_pi1300_p*PiPiS_00_6);
1839 double SF_P01_P_Vp1P = contract_11_0(T1_PipPi01,T1_PipPi01Pim);
1840 double SF_P02_P_Vp2P = contract_11_0(T1_PipPi02,T1_PipPi02Pim);
1841 double SF_P01_P_Vm1P = contract_11_0(T1_PimPi01,T1_PimPi01Pip);
1842 double SF_P02_P_Vm2P = contract_11_0(T1_PimPi02,T1_PimPi02Pip);
1844 amplitude += fitpara[17]*(SF_P01_P_Vp1P*RBW_pi1300_01*GS_rho770_p1 + SF_P02_P_Vp2P*RBW_pi1300_02*GS_rho770_p2 + SF_P01_P_Vm1P*RBW_pi1300_01*GS_rho770_m1 + SF_P02_P_Vm2P*RBW_pi1300_02*GS_rho770_m2);
1851 amplitude += fitpara[14]*fitpara[17]*(-1.0)*(RBW_pi1300_01*PiPiS_pm_0 + RBW_pi1300_02*PiPiS_pm_0);
1853 amplitude += fitpara[15]*fitpara[17]*(-1.0)*(RBW_pi1300_01*PiPiS_pm_6 + RBW_pi1300_02*PiPiS_pm_6);
1856 double SF_Vp1Vm2_S = contract_11_0(T1_PipPi01, T1_PimPi02);
1857 double SF_Vp2Vm1_S = contract_11_0(T1_PipPi02, T1_PimPi01);
1859 amplitude += fitpara[18]*(SF_Vp1Vm2_S*GS_rho770_p1*GS_rho770_m2 + SF_Vp2Vm1_S*GS_rho770_p2*GS_rho770_m1);
1862 double SF_Vp1Vm2_P = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, T1_PipPi01),T1_PimPi02),T1_2p1m2), D0);
1863 double SF_Vp2Vm1_P = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, T1_PipPi02),T1_PimPi01),T1_2p2m1), D0);
1865 amplitude += fitpara[19]*(SF_Vp1Vm2_P*GS_rho770_p1*GS_rho770_m2 + SF_Vp2Vm1_P*GS_rho770_p2*GS_rho770_m1);
1868 double SF_Vp1Vm2_D = contract_11_0(contract_21_1(T2_2p1m2,T1_PipPi01), T1_PimPi02);
1869 double SF_Vp2Vm1_D = contract_11_0(contract_21_1(T2_2p2m1,T1_PipPi02), T1_PimPi01);
1870 amplitude += fitpara[20]*(SF_Vp1Vm2_D*GS_rho770_p1*GS_rho770_m2 + SF_Vp2Vm1_D*GS_rho770_p2*GS_rho770_m1);
1873 double SF_VpmS12_P = contract_11_0(T1_PipPim,T1_2pm12);
1875 amplitude += fitpara[21]*(SF_VpmS12_P*GS_rho770_pm*PiPiS_00_0);
1876 amplitude += fitpara[22]*(SF_VpmS12_P*GS_rho770_pm*PiPiS_00_5);
1877 amplitude += fitpara[23]*(SF_VpmS12_P*GS_rho770_pm*PiPiS_00_6);
1881 amplitude += fitpara[24]*(PiPiS_pm_0*PiPiS_00_0 + PiPiS_00_0*PiPiS_pm_0);
1882 amplitude += fitpara[25]*(PiPiS_pm_0*PiPiS_00_1 + PiPiS_00_0*PiPiS_pm_1);
1883 amplitude += fitpara[26]*(PiPiS_pm_1*PiPiS_00_1 + PiPiS_00_1*PiPiS_pm_1);
1884 amplitude += fitpara[27]*(PiPiS_pm_1*PiPiS_00_5 + PiPiS_00_1*PiPiS_pm_5);
1885 amplitude += fitpara[28]*(PiPiS_pm_5*PiPiS_00_5 + PiPiS_00_5*PiPiS_pm_5);
1886 amplitude += fitpara[29]*(PiPiS_pm_5*PiPiS_00_6 + PiPiS_00_5*PiPiS_pm_6);
1889 double SF_TpmS00_D = contract_22_0(T2_PipPim, T2_2pm12);
1890 double SF_T00Spm_D = contract_22_0(T2_Pi01Pi02, T2_2pm12);
1892 amplitude += fitpara[30]*(SF_TpmS00_D*RBW_f21270_pm*PiPiS_00_5 + SF_T00Spm_D*RBW_f21270_00*PiPiS_pm_5);
1893 amplitude += fitpara[31]*(SF_TpmS00_D*RBW_f21270_pm*PiPiS_00_6 + SF_T00Spm_D*RBW_f21270_00*PiPiS_pm_6);
1896 double SF_PT01_S_TP = contract_22_0(contract_42_2(Proj2_3z1, T2_PipPim), T2_3z12);
1897 double SF_PT02_S_TP = contract_22_0(contract_42_2(Proj2_3z2, T2_PipPim), T2_3z21);
1899 amplitude += fitpara[32]*(-1.0)*(SF_PT01_S_TP*RBW_f21270_pm*RBW_pi21670_01 + SF_PT02_S_TP*RBW_f21270_pm*RBW_pi21670_02);
1902 double SF_V1_Vz = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, PipPimPi01), T1_PipPimPi01), T1_PipPim), contract_21_1(Proj1_3z1, T1_3z12));
1903 double SF_V1_Vp1 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, PipPimPi01), T1_PipPi01Pim), T1_PipPi01), contract_21_1(Proj1_3z1, T1_3z12));
1904 double SF_V1_Vm1 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, PipPimPi01), T1_PimPi01Pip), T1_PimPi01), contract_21_1(Proj1_3z1, T1_3z12));
1906 double SF_V2_Vz = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, PipPimPi02), T1_PipPimPi02), T1_PipPim), contract_21_1(Proj1_3z2, T1_3z21));
1907 double SF_V2_Vp2 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, PipPimPi02), T1_PipPi02Pim), T1_PipPi02), contract_21_1(Proj1_3z2, T1_3z21));
1908 double SF_V1_Vm2 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(epsilon_uvmn, PipPimPi02), T1_PimPi02Pip), T1_PimPi02), contract_21_1(Proj1_3z2, T1_3z21));
1912 amplitude += (-1.0) * fitpara[33]*(SF_V1_Vp1*RBW_omega_01*GS_rho770_p1 - SF_V1_Vz*RBW_omega_01*GS_rho770_pm - SF_V1_Vm1*RBW_omega_01*GS_rho770_m1 + SF_V2_Vp2*RBW_omega_02*GS_rho770_p2 - SF_V2_Vz*RBW_omega_02*GS_rho770_pm - SF_V1_Vm2*RBW_omega_02*GS_rho770_m2);
1916 amplitude += (-1.0) * fitpara[34]*(SF_V1_Vp1*RBW_phi_01*GS_rho770_p1 - SF_V1_Vz*RBW_phi_01*GS_rho770_pm - SF_V1_Vm1*RBW_phi_01*GS_rho770_m1 + SF_V2_Vp2*RBW_phi_02*GS_rho770_p2 - SF_V2_Vz*RBW_phi_02*GS_rho770_pm - SF_V1_Vm2*RBW_phi_02*GS_rho770_m2);
1922int EvtD0Topippim2pi0::CalAmp(){
1924 m_AmpD0 = CalD0Amp();
1925 m_AmpDb = CalDbAmp();
1932 double temp =
x.real()*
x.real() +
x.imag()*
x.imag();
1938 double temp = atan(
x.imag()/
x.real());
1939 if(
x.real()<0) temp=temp+TMath::Pi();
1943double EvtD0Topippim2pi0::Get_strongPhase()
1945 double temp = arg(m_AmpD0) - arg(m_AmpDb);
1946 while (temp < -TMath::Pi()){
1947 temp += 2.0*TMath::Pi();
1949 while (temp > TMath::Pi()){
1950 temp -= 2.0*TMath::Pi();
1955double EvtD0Topippim2pi0::AmplitudeSquare(
int charm,
int tagmode){
1957 EvtVector4R dp1=GetDaugMomLab(0),dp2=GetDaugMomLab(1),dp3=GetDaugMomLab(2), dp4=GetDaugMomLab(3);
1960 double emp =
mp.
get(0);
1968 double p4pip[4], p4pim[4], p4pi01[4], p4pi02[4];
1969 for(
int i=0; i<3; i++){
1970 p4pip[i]=dp1bst.
get(i+1);
1971 p4pim[i]=dp2bst.
get(i+1);
1972 p4pi01[i]=dp3bst.
get(i+1);
1973 p4pi02[i]=dp4bst.
get(i+1);
1975 p4pip[3]=dp1bst.
get(0);
1976 p4pim[3]=dp2bst.
get(0);
1977 p4pi01[3]=dp3bst.
get(0);
1978 p4pi02[3]=dp4bst.
get(0);
1980 setInput(p4pip, p4pim, p4pi01, p4pi02);
1984 ampD0 = Get_AmpD0();
1985 ampDb = Get_AmpDb();
1987 ampD0 = Get_AmpDb();
1988 ampDb = Get_AmpD0();
1991 double ampsq = 1e-20;
1992 double r_tag = 0, R_tag = 0, delta_tag = 0;
1994 if (tagmode==1||tagmode==2||tagmode==3) {
1998 delta_tag = 192.1/180.0*3.1415926;
1999 }
else if(tagmode == 2){
2002 delta_tag = 196.0/180.0*3.1415926;
2003 }
else if(tagmode == 3){
2006 delta_tag = 161.0/180.0*3.1415926;
2010 double ampsq = mag2(ampD0_part1) + r_tag*r_tag*(1-R_tag*R_tag)*(mag2(ampDb));
2012 ampsq = mag2(ampD0);
2015 return (ampsq <= 0) ? 1e-20 : ampsq;
double sin(const BesAngle a)
double cos(const BesAngle a)
double P(RecMdcKalTrack *trk)
TFile f("ana_bhabha660a_dqa_mcPat_zy_old.root")
EvtDiracSpinor boostTo(const EvtDiracSpinor &sp, const EvtVector4R p4)
EvtTensor3C eps(const EvtVector3R &v)
*******INTEGER m_nBinMax INTEGER m_NdiMax !No of bins in histogram for cell exploration division $ !Last vertex $ !Last active cell $ !Last cell in buffer $ !No of sampling when dividing cell $ !No of function total $ !Flag for random ceel for $ !Flag for type of for WtMax $ !Flag which decides whether vertices are included in the sampling $ entire domain is hyp !Maximum effective eevents per saves r n generator level $ !Flag for chat level in output
****INTEGER imax DOUBLE PRECISION m_pi *DOUBLE PRECISION m_amfin DOUBLE PRECISION m_Chfin DOUBLE PRECISION m_Xenph DOUBLE PRECISION m_sinw2 DOUBLE PRECISION m_GFermi DOUBLE PRECISION m_MfinMin DOUBLE PRECISION m_ta2 INTEGER m_out INTEGER m_KeyFSR INTEGER m_KeyQCD *COMMON c_Semalib $ !copy of input $ !CMS energy $ !beam mass $ !final mass $ !beam charge $ !final charge $ !smallest final mass $ !Z mass $ !Z width $ !EW mixing angle $ !Gmu Fermi $ alphaQED at q
void getName(std::string &name)
void decay(EvtParticle *p)
virtual ~EvtD0Topippim2pi0()
void setProbMax(double prbmx)
void checkNDaug(int d1, int d2=-1)
void checkNArg(int a1, int a2=-1, int a3=-1, int a4=-1)
void setProb(double prob)
const EvtVector4R & getP4() const
EvtParticle * getDaug(int i)
double initializePhaseSpace(int numdaughter, EvtId *daughters, double poleSize=-1., int whichTwo1=0, int whichTwo2=1)