BOSS 7.1.2
BESIII Offline Software System
Loading...
Searching...
No Matches
KalFitAlg/KalFitAlg-00-08-07/src/lpav/Lpar.cxx
Go to the documentation of this file.
1// -*- C++ -*-
2//
3// Package: <package>
4// Module: Lpar
5//
6// Description: <one line class summary>
7//
8// Implimentation:
9// <Notes on implimentation>
10//
11// Author: KATAYAMA Nobuhiko
12// Created: Fri Feb 6 10:21:49 JST 1998
13
14
15#include <iostream>
16
17// system include files
18#include <cmath>
19// user include files
20#include "KalFitAlg/lpav/Lpar.h"
21using CLHEP::HepVector;
22using CLHEP::Hep3Vector;
23using CLHEP::HepMatrix;
24using CLHEP::HepSymMatrix;
25//
26// constants, enums and typedefs
27//
28// static data member definitions
29//
30const double Lpar::BELLE_ALPHA(333.564095);
31
32// constructors and destructor
33//
34// Lpar::Lpar(double x1, double y1, double x2, double y2, double x3, double y3) {
35// circle(x1, y1, x2, y2, x3, y3);
36// }
37Lpar::Cpar::Cpar(const Lpar&l) {
38 m_cu = l.kappa();
39 if (l.alpha() !=0 && l.beta() !=0)
40 m_fi = atan2(l.alpha(), -l.beta());
41 else m_fi = 0;
42 if(m_fi<0) m_fi+=2*M_PI;
43 m_da = 2 * l.gamma()/ (1 + sqrt (1 + 4 * l.kappa() * l.gamma()));
44 m_cfi = cos(m_fi);
45 m_sfi = sin(m_fi);
46}
47
48// Lpar::Lpar( const Lpar& )
49// {
50// }
51
53{
54}
55
56//
57// assignment operators
58//
59// const Lpar& Lpar::operator=( const Lpar& )
60// {
61// }
62
63//
64// comparison operators
65//
66// bool Lpar::operator==( const Lpar& ) const
67// {
68// }
69
70// bool Lpar::operator!=( const Lpar& ) const
71// {
72// }
73
74//
75// member functions
76//
77void Lpar::circle(double x1, double y1, double x2, double y2,
78 double x3, double y3) {
79 double a;
80 double b;
81 double c;
82 double delta = (x1-x2)*(y1-y3) - (y1-y2)*(x1-x3);
83 if(delta==0) {
84 //
85 // three points are on a line.
86 //
87 m_kappa = 0;
88 double r12sq = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2);
89 if (r12sq>0) {
90 double r12 = sqrt(r12sq);
91 m_beta = -(x1-x2)/r12;
92 m_alpha = (y1-y2)/r12;
93 m_gamma = - (m_alpha*x1+m_beta*y1);
94 } else {
95 double r13sq = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3);
96 if (r13sq>0) {
97 double r13 = sqrt(r13sq);
98 m_beta = -(x1-x3)/r13;
99 m_alpha = (y1-y3)/r13;
100 m_gamma = - (m_alpha*x3+m_beta*y3);
101 } else {
102 double r23sq = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3);
103 if (r23sq>0) {
104 double r23 = sqrt(r23sq);
105 m_beta = -(x2-x3)/r23;
106 m_alpha = (y2-y3)/r23;
107 m_gamma = - (m_alpha*x3+m_beta*y3);
108 } else {
109 m_alpha = 1;
110 m_beta = 0;
111 m_gamma = 0;
112 }
113 }
114 }
115 } else {
116 double r1sq = x1 * x1 + y1 * y1;
117 double r2sq = x2 * x2 + y2 * y2;
118 double r3sq = x3 * x3 + y3 * y3;
119 a = 0.5 * ( (y1-y3)*(r1sq-r2sq) - (y1-y2)*(r1sq-r3sq)) / delta;
120 b = 0.5 * (- (x1-x3)*(r1sq-r2sq) + (x1-x2)*(r1sq-r3sq)) / delta;
121 double csq = (x1-a)*(x1-a) + (y1-b)*(y1-b);
122 c = sqrt(csq);
123 double csq2 = (x2-a)*(x2-a) + (y2-b)*(y2-b);
124 double csq3 = (x3-a)*(x3-a) + (y3-b)*(y3-b);
125 m_kappa = 1 / (2 * c);
126 m_alpha = - 2 * a * m_kappa;
127 m_beta = - 2 * b * m_kappa;
128 m_gamma = (a*a + b*b - c*c) * m_kappa;
129 }
130}
131
132HepMatrix Lpar::dldc() const
133#ifdef BELLE_OPTIMIZED_RETURN
134return vret(3,4);
135{
136#else
137{
138 HepMatrix vret(3,4);
139#endif
140 Cpar cp(*this);
141 double xi = cp.xi();
142 double s = cp.sfi();
143 double c = cp.cfi();
144 vret(1,1) = 2*cp.da()*s;
145 vret(1,2) = -2*cp.da()*c;
146 vret(1,3) = cp.da()*cp.da();
147 vret(1,4) = 1;
148 vret(2,1) = xi*c;
149 vret(2,2) = xi*s;
150 vret(2,3) = 0;
151 vret(2,4) = 0;
152 vret(3,1) = 2*cp.cu()*s;
153 vret(3,2) = -2*cp.cu()*c;
154 vret(3,3) = xi;
155 vret(3,4) = 0;
156 return vret;
157}
158
159bool Lpar::xy(double r, double &x, double &y, int dir) const {
160 double t_kr2g = kr2g(r);
161 double t_xi2 = xi2();
162 double ro = r * r * t_xi2 - t_kr2g * t_kr2g;
163 if ( ro < 0 ) return false;
164 double rs = sqrt(ro);
165 if(dir==0) {
166 x = (- m_alpha * t_kr2g - m_beta * rs) / t_xi2;
167 y = (- m_beta * t_kr2g + m_alpha * rs) / t_xi2;
168 } else {
169 x = (- m_alpha * t_kr2g + m_beta * rs) / t_xi2;
170 y = (- m_beta * t_kr2g - m_alpha * rs) / t_xi2;
171 }
172 return true;
173}
174
175double Lpar::x(double r) const {
176 double t_x, t_y;
177 xy(r, t_x, t_y);
178 return t_x;
179}
180
181double Lpar::y(double r) const {
182 double t_x, t_y;
183 xy(r, t_x, t_y);
184 return t_y;
185}
186
187double Lpar::phi(double r,int dir) const {
188 double x, y;
189 if (!xy(r,x,y, dir)) return -1;
190 double p = atan2(y,x);
191 if (p<0) p += (2*M_PI);
192 return p;
193}
194
195void Lpar::xhyh(double x, double y, double &xh, double &yh) const {
196 double ddm = dr(x, y);
197 if (ddm==0) {
198 xh = x;
199 yh = y;
200 return;
201 }
202 double kdp1 = 1 + 2 * kappa() * ddm;
203 xh = x - ddm * ( 2 * kappa() * x + alpha())/kdp1;
204 yh = y - ddm * ( 2 * kappa() * y + beta())/kdp1;
205}
206
207double Lpar::s(double x, double y) const {
208 double xh, yh, xx, yy;
209 xhyh(x, y, xh, yh);
210 double fk = fabs(kappa());
211 if (fk==0) return 0;
212 yy = 2 * fk * ( alpha() * yh - beta() * xh);
213 xx = 2 * kappa() * ( alpha() * xh + beta() * yh ) + xi2();
214 double sp = atan2(yy, xx);
215 if (sp<0) sp += (2*M_PI);
216 return sp / 2 / fk;
217}
218
219double Lpar::s(double r, int dir) const {
220 double d0 = da();
221 if (fabs(r)<fabs(d0)) return -1;
222 double b = fabs(kappa()) * sqrt((r*r-d0*d0)/(1 + 2 * kappa() * d0));
223 if (fabs(b)>1) return -1;
224 if(dir==0)return asin(b)/fabs(kappa());
225 return (M_PI-asin(b))/fabs(kappa());
226}
227
228HepVector Lpar::center() const
229#ifdef BELLE_OPTIMIZED_RETURN
230return v(3);
231{
232#else
233{
234 HepVector v(3);
235#endif
236 v(1) = xc();
237 v(2) = yc();
238 v(3) = 0;
239 return(v);
240}
241
242int intersect(const Lpar&lp1, const Lpar&lp2, HepVector&v1, HepVector&v2) {
243 HepVector cen1(lp1.center());
244 HepVector cen2(lp2.center());
245 double dx = cen1(1)-cen2(1);
246 double dy = cen1(2)-cen2(2);
247 double dc = sqrt(dx*dx+dy*dy);
248 if(dc<fabs(0.5/lp1.kappa())+fabs(0.5/lp2.kappa())) {
249 double a1 = std::sqrt(lp1.alpha()) + std::sqrt(lp1.beta());
250 double a2 = std::sqrt(lp2.alpha()) + std::sqrt(lp2.beta());
251 double a3 = lp1.alpha()*lp2.alpha() + lp1.beta()*lp2.beta();
252 double det = lp1.alpha()*lp2.beta() - lp1.beta()*lp2.alpha();
253 if(fabs(det)>1e-12) {
254 double c1 = a2 * std::sqrt(lp1.kappa()) + a1 * std::sqrt(lp2.kappa()) -
255 2.0 * a3 * lp1.kappa() * lp2.kappa();
256 if(c1!=0) {
257 double cinv = 1.0 / c1;
258 double c2 = std::sqrt(a3) - 0.5 * (a1 + a2) - 2.0 * a3 *
259 (lp1.gamma() * lp2.kappa() + lp2.gamma() * lp1.kappa());
260 double c3 = a2 * std::sqrt(lp1.gamma()) + a1 * std::sqrt(lp2.gamma()) -
261 2.0 * a3 * lp1.gamma() * lp2.gamma();
262 double root = std::sqrt(c2) - 4.0 * c1 * c3;
263 if (root>=0) {
264 root = sqrt(root);
265 double rad2[2];
266 rad2[0] = 0.5 * cinv * (-c2 - root);
267 rad2[1] = 0.5 * cinv * (-c2 + root);
268 double ab1 = -(lp2.beta() * lp1.gamma() - lp1.beta() * lp2.gamma());
269 double ab2 = (lp2.alpha() * lp1.gamma() - lp1.alpha() * lp2.gamma());
270 double ac1 = -(lp2.beta() * lp1.kappa() - lp1.beta() * lp2.kappa());
271 double ac2 = (lp2.alpha() * lp1.kappa() - lp1.alpha() * lp2.kappa());
272 double dinv = 1.0 / det;
273 v1(1) = dinv * (ab1 + ac1 * rad2[0]);
274 v1(2) = dinv * (ab2 + ac2 * rad2[0]);
275 v1(3) = 0;
276 v2(1) = dinv * (ab1 + ac1 * rad2[1]);
277 v2(2) = dinv * (ab2 + ac2 * rad2[1]);
278 v2(3) = 0;
279 double d1 = lp1.d(v1(1),v1(2));
280 double d2 = lp2.d(v1(1),v1(2));
281 double d3 = lp1.d(v2(1),v2(2));
282 double d4 = lp2.d(v2(1),v2(2));
283 double r = sqrt(rad2[0]);
284 Lpar::Cpar cp1(lp1);
285 Lpar::Cpar cp2(lp2);
286 for(int j=0;j<2;j++) {
287 double s1,s2;
288 if(j==0) {
289 s1 = lp1.s(v1(1),v1(2));
290 s2 = lp2.s(v1(1),v1(2));
291 } else {
292 s1 = lp1.s(v2(1),v2(2));
293 s2 = lp2.s(v2(1),v2(2));
294 }
295 double phi1 = cp1.fi() + 2 * cp1.cu() * s1;
296 double phi2 = cp2.fi() + 2 * cp2.cu() * s2;
297 double f = (1 + 2 * cp1.cu() * cp1.da()) *
298 (1 + 2 * cp2.cu() * cp2.da()) * cos(cp1.fi()-cp2.fi());
299 f -= 2 * (lp1.gamma() * lp2.kappa() + lp2.gamma() * lp1.kappa());
300 double cosphi12 = f;
301 }
302 return 2;
303 }
304 }
305 }
306 }
307 return 0;
308}
309
310//
311// const member functions
312//
313
314//
315// static member functions
316//
317
318std::ostream& operator<<(std::ostream &o, Lpar &s) {
319 return o << " al=" << s.m_alpha << " be=" << s.m_beta
320 << " ka=" << s.m_kappa << " ga=" << s.m_gamma;
321}
322
double sin(const BesAngle a)
Definition BesAngle.h:210
double cos(const BesAngle a)
Definition BesAngle.h:213
std::string root
const double delta
TFile f("ana_bhabha660a_dqa_mcPat_zy_old.root")
Double_t phi2
Double_t x[10]
Double_t phi1
int dc[18]
Definition EvtPycont.cc:66
XmlRpcServer s
**********Class see also m_nmax DOUBLE PRECISION m_amel DOUBLE PRECISION m_x2 DOUBLE PRECISION m_alfinv DOUBLE PRECISION m_Xenph INTEGER m_KeyWtm INTEGER m_idyfs DOUBLE PRECISION m_zini DOUBLE PRECISION m_q2 DOUBLE PRECISION m_Wt_KF DOUBLE PRECISION m_WtCut INTEGER m_KFfin *COMMON c_KarLud $ !Input CMS energy[GeV] $ !CMS energy after beam spread beam strahlung[GeV] $ !Beam energy spread[GeV] $ !z boost due to beam spread $ !electron beam mass *ff pair spectrum $ !minimum v
Definition KarLud.h:35
#define M_PI
Definition TConstant.h:4
double dr(double x, double y) const
friend std::ostream & operator<<(std::ostream &o, Lpar &)
double d(double x, double y) const
friend int intersect(const Lpar &, const Lpar &, HepVector &, HepVector &)
void circle(double x1, double y1, double x2, double y2, double x3, double y3)
double s(double x, double y) const
double phi(double r, int dir=0) const
double y[1000]
const double b
Definition slope.cxx:9