BOSS 7.1.1
BESIII Offline Software System
Loading...
Searching...
No Matches
TrackUtil/TrackUtil-00-00-08/src/Lpar.cxx
Go to the documentation of this file.
1// -*- C++ -*-
2//
3// Package: <package>
4// Module: Lpar
5//
6// Description: <one line class summary>
7//
8// Implimentation:
9// <Notes on implimentation>
10//
11// Author: KATAYAMA Nobuhiko
12// Created: Fri Feb 6 10:21:49 JST 1998
13// $Id: Lpar.cxx,v 1.2 2008/06/30 08:46:52 max Exp $
14
15#include <iostream>
16
17// system include files
18#include <cmath>
19// user include files
20#include "TrackUtil/Lpar.h"
21
22//
23// constants, enums and typedefs
24//
25
26//
27// static data member definitions
28//
29
30//const double Lpar::BELLE_ALPHA(-333.564095);
31
32//
33// constructors and destructor
34//
35// Lpar::Lpar(double x1, double y1, double x2, double y2, double x3, double y3) {
36// circle(x1, y1, x2, y2, x3, y3);
37// }
38Lpar::Cpar::Cpar(const Lpar&l) {
39 m_cu = l.kappa();
40 if (l.alpha() !=0 && l.beta() !=0)
41 m_fi = atan2(l.alpha(), -l.beta());
42 else m_fi = 0;
43 if(m_fi<0) m_fi+=2*M_PI;
44 m_da = 2 * l.gamma()/ (1 + sqrt (1 + 4 * l.kappa() * l.gamma()));
45 m_cfi = cos(m_fi);
46 m_sfi = sin(m_fi);
47}
48
49// Lpar::Lpar( const Lpar& )
50// {
51// }
52
54{
55}
56
57//
58// assignment operators
59//
60// const Lpar& Lpar::operator=( const Lpar& )
61// {
62// }
63
64//
65// comparison operators
66//
67// bool Lpar::operator==( const Lpar& ) const
68// {
69// }
70
71// bool Lpar::operator!=( const Lpar& ) const
72// {
73// }
74
75//
76// member functions
77//
78void Lpar::circle(double x1, double y1, double x2, double y2,
79 double x3, double y3) {
80 double a;
81 double b;
82 double c;
83 double delta = (x1-x2)*(y1-y3) - (y1-y2)*(x1-x3);
84 if(delta==0) {
85 //
86 // three points are on a line.
87 //
88 m_kappa = 0;
89 double r12sq = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2);
90 if (r12sq>0) {
91 double r12 = sqrt(r12sq);
92 m_beta = -(x1-x2)/r12;
93 m_alpha = (y1-y2)/r12;
94 m_gamma = - (m_alpha*x1+m_beta*y1);
95 } else {
96 double r13sq = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3);
97 if (r13sq>0) {
98 double r13 = sqrt(r13sq);
99 m_beta = -(x1-x3)/r13;
100 m_alpha = (y1-y3)/r13;
101 m_gamma = - (m_alpha*x3+m_beta*y3);
102 } else {
103 double r23sq = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3);
104 if (r23sq>0) {
105 double r23 = sqrt(r23sq);
106 m_beta = -(x2-x3)/r23;
107 m_alpha = (y2-y3)/r23;
108 m_gamma = - (m_alpha*x3+m_beta*y3);
109 } else {
110 m_alpha = 1;
111 m_beta = 0;
112 m_gamma = 0;
113 }
114 }
115 }
116 } else {
117 double r1sq = x1 * x1 + y1 * y1;
118 double r2sq = x2 * x2 + y2 * y2;
119 double r3sq = x3 * x3 + y3 * y3;
120 a = 0.5 * ( (y1-y3)*(r1sq-r2sq) - (y1-y2)*(r1sq-r3sq)) / delta;
121 b = 0.5 * (- (x1-x3)*(r1sq-r2sq) + (x1-x2)*(r1sq-r3sq)) / delta;
122 double csq = (x1-a)*(x1-a) + (y1-b)*(y1-b);
123 c = sqrt(csq);
124 double csq2 = (x2-a)*(x2-a) + (y2-b)*(y2-b);
125 double csq3 = (x3-a)*(x3-a) + (y3-b)*(y3-b);
126 m_kappa = 1 / (2 * c);
127 m_alpha = - 2 * a * m_kappa;
128 m_beta = - 2 * b * m_kappa;
129 m_gamma = (a*a + b*b - c*c) * m_kappa;
130 }
131}
132
133HepMatrix Lpar::dldc() const
134#ifdef BELLE_OPTIMIZED_RETURN
135return vret(3,4);
136{
137#else
138{
139 HepMatrix vret(3,4);
140#endif
141 Cpar cp(*this);
142 double xi = cp.xi();
143 double s = cp.sfi();
144 double c = cp.cfi();
145 vret(1,1) = 2*cp.da()*s;
146 vret(1,2) = -2*cp.da()*c;
147 vret(1,3) = cp.da()*cp.da();
148 vret(1,4) = 1;
149 vret(2,1) = xi*c;
150 vret(2,2) = xi*s;
151 vret(2,3) = 0;
152 vret(2,4) = 0;
153 vret(3,1) = 2*cp.cu()*s;
154 vret(3,2) = -2*cp.cu()*c;
155 vret(3,3) = xi;
156 vret(3,4) = 0;
157 return vret;
158}
159
160bool Lpar::xy(double r, double &x, double &y, int dir) const {
161 double t_kr2g = kr2g(r);
162 double t_xi2 = xi2();
163 double ro = r * r * t_xi2 - t_kr2g * t_kr2g;
164 if ( ro < 0 ) return false;
165 double rs = sqrt(ro);
166 if(dir==0) {
167 x = (- m_alpha * t_kr2g - m_beta * rs) / t_xi2;
168 y = (- m_beta * t_kr2g + m_alpha * rs) / t_xi2;
169 } else {
170 x = (- m_alpha * t_kr2g + m_beta * rs) / t_xi2;
171 y = (- m_beta * t_kr2g - m_alpha * rs) / t_xi2;
172 }
173 return true;
174}
175
176double Lpar::x(double r) const {
177 double t_x, t_y;
178 xy(r, t_x, t_y);
179 return t_x;
180}
181
182double Lpar::y(double r) const {
183 double t_x, t_y;
184 xy(r, t_x, t_y);
185 return t_y;
186}
187
188double Lpar::phi(double r,int dir) const {
189 double x, y;
190 if (!xy(r,x,y, dir)) return -1;
191 double p = atan2(y,x);
192 if (p<0) p += (2*M_PI);
193 return p;
194}
195
196void Lpar::xhyh(double x, double y, double &xh, double &yh) const {
197 double ddm = dr(x, y);
198 if (ddm==0) {
199 xh = x;
200 yh = y;
201 return;
202 }
203 double kdp1 = 1 + 2 * kappa() * ddm;
204 xh = x - ddm * ( 2 * kappa() * x + alpha())/kdp1;
205 yh = y - ddm * ( 2 * kappa() * y + beta())/kdp1;
206}
207
208double Lpar::s(double x, double y) const {
209 double xh, yh, xx, yy;
210 xhyh(x, y, xh, yh);
211 double fk = fabs(kappa());
212 if (fk==0) return 0;
213 yy = 2 * fk * ( alpha() * yh - beta() * xh);
214 xx = 2 * kappa() * ( alpha() * xh + beta() * yh ) + xi2();
215 double sp = atan2(yy, xx);
216 if (sp<0) sp += (2*M_PI);
217 return sp / 2 / fk;
218}
219
220double Lpar::s(double r, int dir) const {
221 double d0 = da();
222 if (fabs(r)<fabs(d0)) return -1;
223 double b = fabs(kappa()) * sqrt((r*r-d0*d0)/(1 + 2 * kappa() * d0));
224 if (fabs(b)>1) return -1;
225 if(dir==0)return asin(b)/fabs(kappa());
226 return (M_PI-asin(b))/fabs(kappa());
227}
228
229HepVector Lpar::center() const
230#ifdef BELLE_OPTIMIZED_RETURN
231return v(3);
232{
233#else
234{
235 HepVector v(3);
236#endif
237 v(1) = xc();
238 v(2) = yc();
239 v(3) = 0;
240 return(v);
241}
242
243int intersect(const Lpar&lp1, const Lpar&lp2, HepVector&v1, HepVector&v2) {
244 HepVector cen1(lp1.center());
245 HepVector cen2(lp2.center());
246 double dx = cen1(1)-cen2(1);
247 double dy = cen1(2)-cen2(2);
248 double dc = sqrt(dx*dx+dy*dy);
249 if(dc<fabs(0.5/lp1.kappa())+fabs(0.5/lp2.kappa())) {
250 double a1 = std::sqrt(lp1.alpha()) + std::sqrt(lp1.beta());
251 double a2 = std::sqrt(lp2.alpha()) + std::sqrt(lp2.beta());
252 double a3 = lp1.alpha()*lp2.alpha() + lp1.beta()*lp2.beta();
253 double det = lp1.alpha()*lp2.beta() - lp1.beta()*lp2.alpha();
254 if(fabs(det)>1e-12) {
255 double c1 = a2 * std::sqrt(lp1.kappa()) + a1 * std::sqrt(lp2.kappa()) -
256 2.0 * a3 * lp1.kappa() * lp2.kappa();
257 if(c1!=0) {
258 double cinv = 1.0 / c1;
259 double c2 = std::sqrt(a3) - 0.5 * (a1 + a2) - 2.0 * a3 *
260 (lp1.gamma() * lp2.kappa() + lp2.gamma() * lp1.kappa());
261 double c3 = a2 * std::sqrt(lp1.gamma()) + a1 * std::sqrt(lp2.gamma()) -
262 2.0 * a3 * lp1.gamma() * lp2.gamma();
263 double root = std::sqrt(c2) - 4.0 * c1 * c3;
264 if (root>=0) {
265 root = sqrt(root);
266 double rad2[2];
267 rad2[0] = 0.5 * cinv * (-c2 - root);
268 rad2[1] = 0.5 * cinv * (-c2 + root);
269 double ab1 = -(lp2.beta() * lp1.gamma() - lp1.beta() * lp2.gamma());
270 double ab2 = (lp2.alpha() * lp1.gamma() - lp1.alpha() * lp2.gamma());
271 double ac1 = -(lp2.beta() * lp1.kappa() - lp1.beta() * lp2.kappa());
272 double ac2 = (lp2.alpha() * lp1.kappa() - lp1.alpha() * lp2.kappa());
273 double dinv = 1.0 / det;
274 v1(1) = dinv * (ab1 + ac1 * rad2[0]);
275 v1(2) = dinv * (ab2 + ac2 * rad2[0]);
276 v1(3) = 0;
277 v2(1) = dinv * (ab1 + ac1 * rad2[1]);
278 v2(2) = dinv * (ab2 + ac2 * rad2[1]);
279 v2(3) = 0;
280 double d1 = lp1.d(v1(1),v1(2));
281 double d2 = lp2.d(v1(1),v1(2));
282 double d3 = lp1.d(v2(1),v2(2));
283 double d4 = lp2.d(v2(1),v2(2));
284 double r = sqrt(rad2[0]);
285 Lpar::Cpar cp1(lp1);
286 Lpar::Cpar cp2(lp2);
287 for(int j=0;j<2;j++) {
288 double s1,s2;
289 if(j==0) {
290 s1 = lp1.s(v1(1),v1(2));
291 s2 = lp2.s(v1(1),v1(2));
292 } else {
293 s1 = lp1.s(v2(1),v2(2));
294 s2 = lp2.s(v2(1),v2(2));
295 }
296 double phi1 = cp1.fi() + 2 * cp1.cu() * s1;
297 double phi2 = cp2.fi() + 2 * cp2.cu() * s2;
298 double f = (1 + 2 * cp1.cu() * cp1.da()) *
299 (1 + 2 * cp2.cu() * cp2.da()) * cos(cp1.fi()-cp2.fi());
300 f -= 2 * (lp1.gamma() * lp2.kappa() + lp2.gamma() * lp1.kappa());
301 double cosphi12 = f;
302 }
303 return 2;
304 }
305 }
306 }
307 }
308 return 0;
309}
310
311//
312// const member functions
313//
314
315//
316// static member functions
317//
318
319std::ostream& operator<<(std::ostream &o, Lpar &s) {
320 return o << " al=" << s.m_alpha << " be=" << s.m_beta
321 << " ka=" << s.m_kappa << " ga=" << s.m_gamma;
322}
323
double sin(const BesAngle a)
Definition BesAngle.h:210
double cos(const BesAngle a)
Definition BesAngle.h:213
std::string root
const double delta
TFile f("ana_bhabha660a_dqa_mcPat_zy_old.root")
Double_t phi2
Double_t x[10]
Double_t phi1
int dc[18]
Definition EvtPycont.cc:66
XmlRpcServer s
**********Class see also m_nmax DOUBLE PRECISION m_amel DOUBLE PRECISION m_x2 DOUBLE PRECISION m_alfinv DOUBLE PRECISION m_Xenph INTEGER m_KeyWtm INTEGER m_idyfs DOUBLE PRECISION m_zini DOUBLE PRECISION m_q2 DOUBLE PRECISION m_Wt_KF DOUBLE PRECISION m_WtCut INTEGER m_KFfin *COMMON c_KarLud $ !Input CMS energy[GeV] $ !CMS energy after beam spread beam strahlung[GeV] $ !Beam energy spread[GeV] $ !z boost due to beam spread $ !electron beam mass *ff pair spectrum $ !minimum v
Definition KarLud.h:35
#define M_PI
Definition TConstant.h:4
double dr(double x, double y) const
friend std::ostream & operator<<(std::ostream &o, Lpar &)
double d(double x, double y) const
friend int intersect(const Lpar &, const Lpar &, HepVector &, HepVector &)
void circle(double x1, double y1, double x2, double y2, double x3, double y3)
double s(double x, double y) const
double phi(double r, int dir=0) const
double y[1000]
const double b
Definition slope.cxx:9